Superpixel Anything: A general object-based framework
for accurate yet regular superpixel segmentation
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Method: Superpixel Anything Model (SPAM)

* Training strategy
* Supervised on the BSD dataset {/,G}
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* Initialisation of the grid

* Seeds are proportionally placed inside each object
of the prior segmentation

* Constrained K-means clustering

* Local candidates are contained in the same object

Automatic visual attention using saliency map [3] User-driven attention mode using clicks

* Uncertainty pixels (yellow) are not constrained

Segmentation Refinement

e SPAM can be used to refine semantic
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Conclusion and next steps

* Most accurate yet regular superpixels,
outperforming state-of-the-art methods

* Supports any prior segmentation and
handles uncertainty regions effectively

* Offers adaptive and interactive modes

* Next Steps

* Hierarchical decomposition

VSSS [5]

* Extension to video
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