

Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation

Julien Walther, Rémi Giraud, Michaël Clément

IMS Laboratory, University of Bordeaux, CNRS UMR 5218, Bordeaux INP, 33405 Talence, France

Julien.walther@u-bordeaux.fr

Introduction

Context and relevance of superpixels

- Superpixels help to reduce computational complexity by providing an irregular image under-segmentation
- Historical trade-off between accuracy and regularity: Recent deep learning-based approaches only focus on segmentation accuracy \Rightarrow Lack of interpretability

How to improve both accuracy and regularity?

Contributions

- SPAM combines low-level and trainable highlevel features for accurate superpixel clustering
- At inference, clustering may be **guided by prior object-level maps** allowing to produce **accurate** yet regular superpixels within objects
- New adaptive modes to adjust superpixel density within objects
- SPAM delivers the interpretable most superpixels and outperforms state-of-the-art in accuracy and regularity

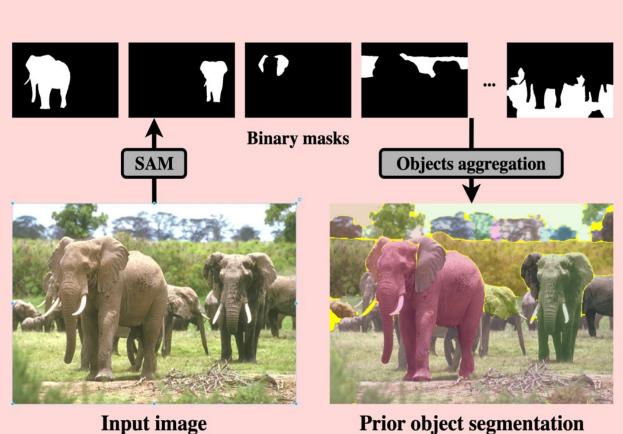
High-Level Object Segmentation with SAM

Objects Proposals

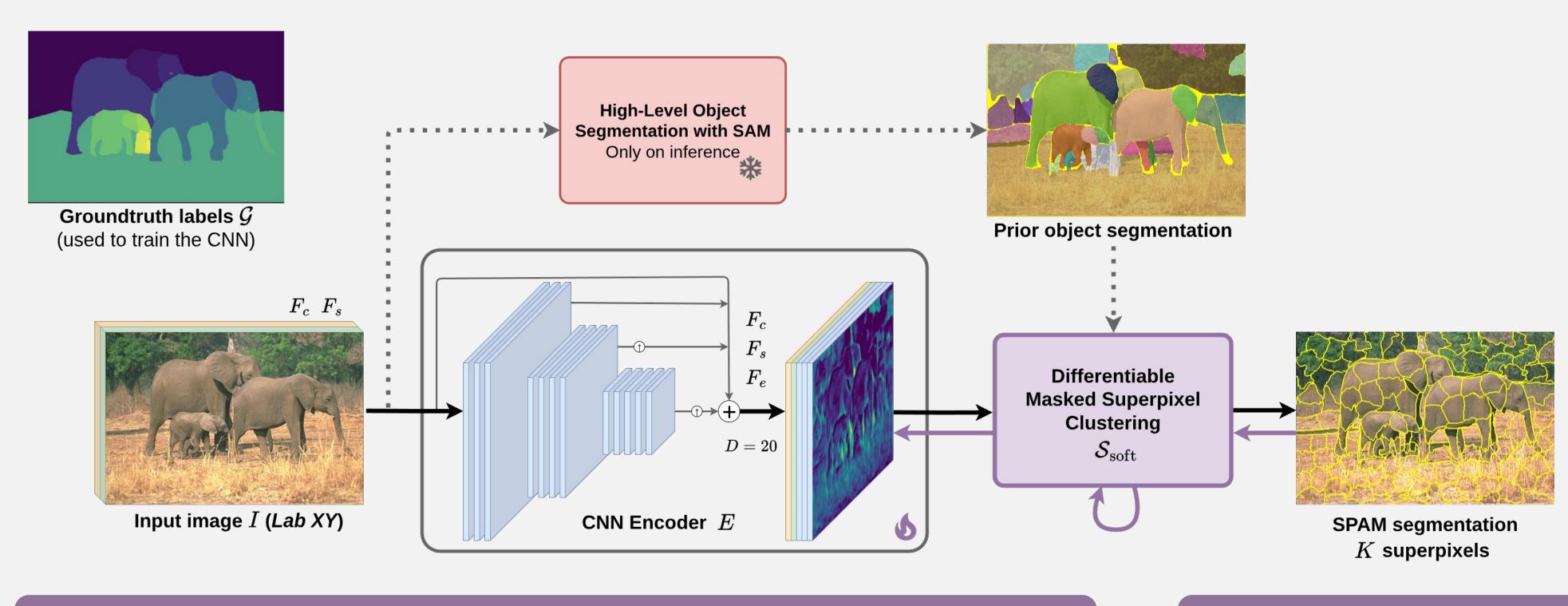
 Segment Anything Model (SAM) [2] generates independent high-level segmentation masks

Aggregation

- Possible mask overlaps between object proposals, leaving unlabeled pixels
- Remove overlaps by subtracting smaller from larger objects



Method: Superpixel Anything Model (SPAM)



Training strategy

- Supervised on the BSD dataset $\{I, \mathcal{G}\}$
- Loss: segmentation and regularity terms

$$\mathcal{L} = \mathcal{L}_{\text{seg}}(\mathcal{G}, \mathcal{S}_{\text{soft}}) + \lambda \, \mathcal{L}_{\text{compact}}(F_s, \mathcal{S}_{\text{soft}})$$

Model architecture

- Lightweight CNN encoder
- Inference time < 200ms

Inference

- Prior object map with uncertainty regions can be used
- Connexity of superpixels within objects is ensured
- Superpixels are regular and visually interpretable

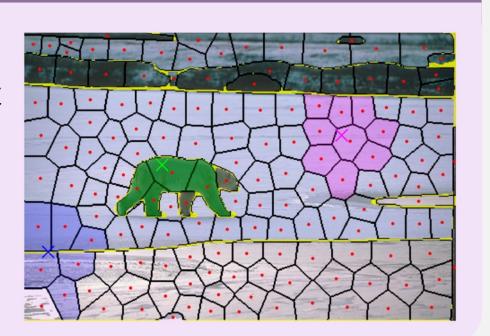
Differentiable Masked Superpixel Clustering

Initialisation of the grid

• Seeds are proportionally placed inside each object of the prior segmentation

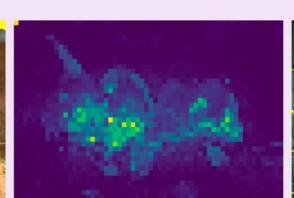
Constrained K-means clustering

- Local candidates are contained in the same object
- Uncertainty pixels (yellow) are not constrained



Adaptive Clustering based on Visual Attention (VA)

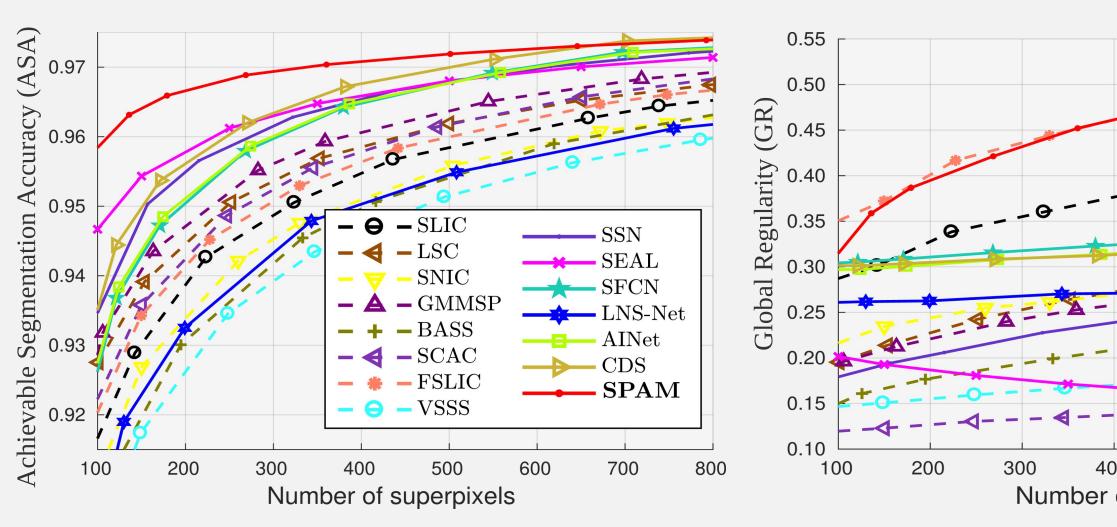
The number of superpixels is increased or decreased by a **factor** r **in regions of interest**



Automatic visual attention using saliency map [3]

User-driven attention mode using clicks

Results



Number of superpixels

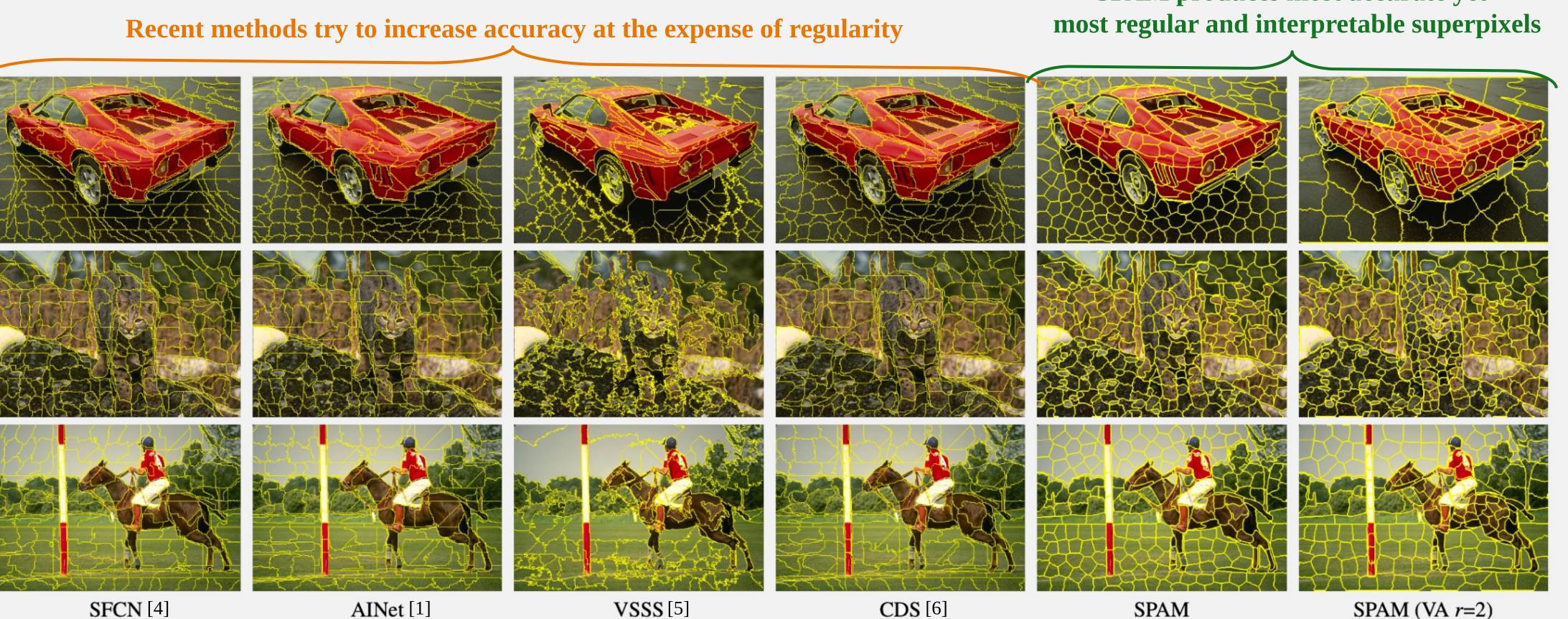
• Quantitative results

- SPAM outperforms SOTA in **both** segmentation accuracy and regularity
- Same results on BSD, NYUV2 and SBD datasets

Qualitative results

- Superpixels are much more regular
- Each one is easily interpretable

⇒ SPAM produces most accurate yet



Segmentation Refinement

• SPAM can be used to refine semantic

- **segmentation** around object borders. • On **DeepLabV3** [7] outputs, using a
- 5×5 dilation to define uncertain areas • Achieves better **mIoU** than baseline and other superpixel methods on PASCAL

VOC2012

DeepLabV3 output Dilated boundaries

Refined w/ AINet

Refined w/ SPAM

Conclusion and next steps

- Most accurate yet regular superpixels, outperforming state-of-the-art methods
- Supports any prior segmentation and handles **uncertainty regions** effectively
- Offers adaptive and interactive modes
- Next Steps
 - Hierarchical decomposition
 - Extension to video

References

[1] Yaxiong Wang, Yunchao Wei, Xueming Qian, Li Zhu, and Yi Yang. AINet: Association implantation for superpixel segmentation. In ICCV, 2021 [2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete Xiao, head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollàr, and Ross B. Girshick. Segment anything. In ICCV, 2023

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In CVPR, 2021

[4] Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Superpixel segmentation with fully convolutional networks. In CVPR, 2020 [5] Pei Zhou, Xuejing Kang, and Anlong Ming. Vine spread for superpixel segmentation. IEEE TIP, 32:878–891, 2023

[6] Sen Xu, Shikui Wei, Tao Ruan, and Lixin Liao. Learning invariant inter-pixel correlations for superpixel generation. In AAAI, 2024 [7] Liang-Chieh Chen. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017