

SuperPatchMatch: an Algorithm for Robust Correspondences using Superpixel Patches

¹ Univ. Bordeaux, CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France ² Univ. Bordeaux, CNRS, IMB, UMR 5251, F-33400 Talence, France ³ Bordeaux INP, LaBRI, UMR 5800, PICTURA, F-33600 Pessac, France

Abstract

Superpixels have become very popular in many computer vision applications but remain underexploited due to the decomposition irregularity. In this paper, we first introduce a novel structure, a superpixel-based patch, called SuperPatch. The proposed structure leads to a robust descriptor that includes the spatial information of the superpixel neighborhood. The SuperPatchMatch method is also introduced to generalize the PatchMatch algorithm to SuperPatches. Finally, we propose a framework for fast segmentation and labeling from an image library, and demonstrate the potential of our approach since we outperform, in terms of computational cost and accuracy, state-of-the-art methods based on learning.

SuperPatch

• Definition: $\mathbf{A}_{\mathbf{i}}$ superpatch of a superpixel $A_{\mathbf{j}}$

Superpixels with barycenter in a fixed radius search R,

$$\mathbf{A_i} = \{A_{i'}, \text{ s.t. } i' \in \mathcal{I}_i^A, \|c_i - c_{i'}\|_2 \le R\}$$

 c_i spatial barycenter of A_i

 F_i feature of A_i (mean color, histogram, etc.)

• Comparison of 2 superpatches:

All superpixels of A_i are compared to all superpixels of a superpatch B_i ,

$$D(\mathbf{A_i}, \mathbf{B_j}) = \frac{\sum_{i' \in \mathcal{I}_i^A} \sum_{j' \in \mathcal{I}_j^B} w(A_{i'}, B_{j'}) d(F_{i'}^A, F_{j'}^B)}{\sum_{i' \in \mathcal{I}_i^A} \sum_{j' \in \mathcal{I}_j^B} w(A_{i'}, B_{j'})}$$

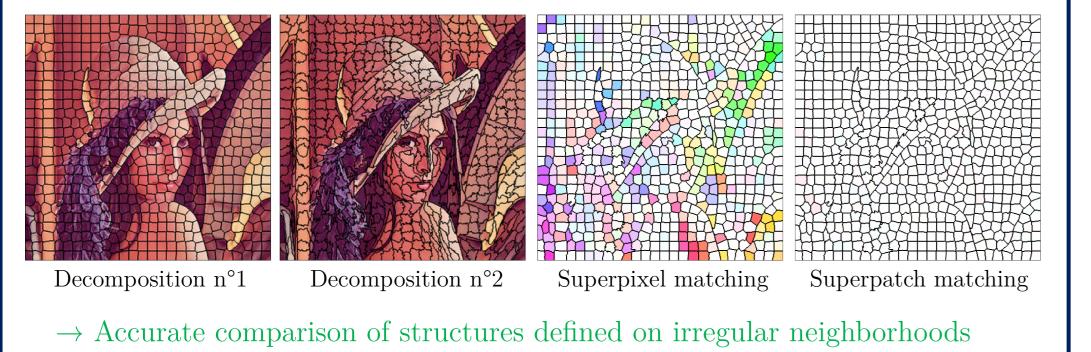
Weighting according to relative registered positions,

$$w(A_{i'}, B_{j'}) = \exp\left(-x_{i'j'}^T x_{i'j'} / \sigma_1^2\right) w_s(A_{i'}) w_s(B_{j'})$$

with $x_{i',j'} = c_{j'} - c_{i'} + c_i - c_j$ and $w_s(A_{i'}) = \exp\left(-\|c_i - c_{i'}\|_2^2/\sigma_2^2\right)$

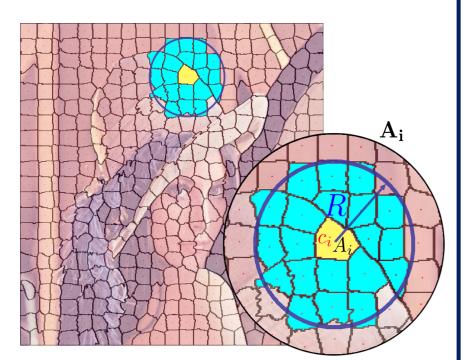
• Robustness of superpatches:

Matching displacement (optical flow display) between two decompositions:



Acknowledgments: Financial support of the French State, managed by the French National Research Agency (ANR) in the frame of the GOTMI project (ANR-10-IDEX-03-02) with the Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57).

[1] - C. Barnes, et al. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. on Graphics, 28(3), 2009. [2] - G. Huang, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Report 07-49, Univ. Massachusetts, 2007. [3] - A. Kae, et al. Augmenting CRFs with Boltzmann machine shape priors for image labeling. CVPR, pages 2019-2026, 2013. [4] - S. Liu, et al. Multi-objective convolutional learning for face labeling. CVPR, pages 3451-3459, 2015. [5] - R. Giraud, et al. Superpixel-based color transfer. ICIP, 2017.



<u>Rémi Giraud</u>^{1,2,3}, Vinh-Tong Ta^{1,3}, Aurélie Bugeau¹, Pierrick Coupé¹, Nicolas Papadakis²

{remi.giraud, vinh-thong.ta, aurelie.bugeau, pierrick.coupe}@labri.fr nicolas.papadakis@math.u-bordeaux.fr

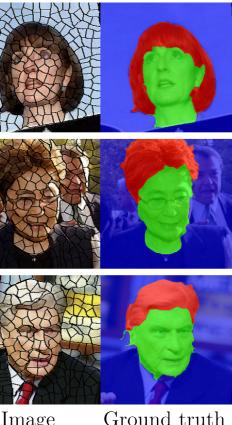
SuperPatchMatch • PatchMatch: Fast approximate nearest neighbor (ANN) matching of 2D patches between two images, based on cooperative and random strategy [1] • SuperPatchMatch: Adaptation of PatchMatch to superpatch matching • Initialization: Each superpixel A_i is randomly associated to a superpixel $B_{(i)}$ • **Propagation:** Test of shifted matches of adjacent superpixels A_i Iterative process Irregular decompositions of A_i 's neighborhood \rightarrow selection of the candidate $C_{(i)}$ with the most similar orientation to find better matches • Random search: Sampling of superpixels in *B* around the best match **Application to Segmentation and Labeling** • Multiple SuperPatchMatch (SPM) in a library: SPM is adapted to find matches in a library of example images Tk independent SPM give k-ANN T_i in T, with labels $l(T_i) = m \in \{1, \ldots, M\}$ Label fusion SuperPatchMatc • Label fusion from superpixel matches: Label map: $L_m(A_i) = \frac{\sum_{T_j \in \mathcal{K}_i^m} \omega(A_i, T_j) l(T_j)}{\sum_{m=1}^M \sum_{T_j \in \mathcal{K}_i^m} \omega(A_i, T_j)}$ with $\mathcal{K}_i^m = \{T_j\}$ s.t. $l(T_j) = m$ Map regularization and labeling (highest probability): $\mathcal{L}(A_i) = \operatorname{argmax} L_m(A_i)$ $m \in \{1, ..., M\}$

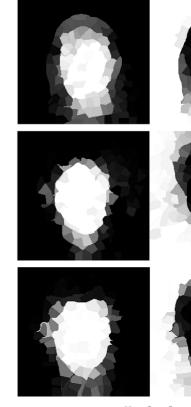
Paper published in IEEE Trans. on Image Processing, 2017

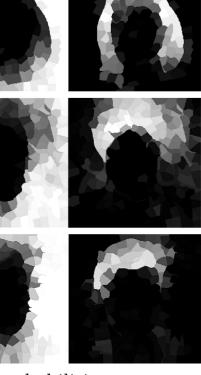
Results

• Dataset: LFW [2] (927 test images, 1500 example images)

• Labeling examples: k=50 ANN







Ground truth

Labeling probabilities Background Face

Highest prob. Regularization

• Comparison to state-of-the-art:

Method	Accuracy (superpixel)	Accuracy (pixel)	Computational time	Learning time
PatchMatch	87.73%	87.02%	3.940s	0
CRBM [3]	94.10%	Х	X	hours
GLOC [3]	94.95%	Х	0.323s	hours
DCNN [4]	х	95.24%	Х	hours
SuperPatchMatch	95.08%	95.45%	$0.280\mathrm{s}$	0

 \rightarrow SuperPatchMatch outperforms recent CNN architectures \rightarrow No necessary learning

Application to Color Transfer (ICIP 2017)

• Superpixel-based color transfer (SCT) [5] between two images:

• Decomposition into superpixels

- Matching with SuperPatchMatch (specific constraints)
- Color transfer with respect to initial grain and exposure

