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Superpixels have become very popular in many computer vision applications but * PatchMatch: Fast approximate nearest neighbor (ANN) matching of 2D patches * Dataset: LEFW [2] (927 test images, 1500 example images)
remain underexploited due to the decomposition irregularity. In this paper, we first between two images, based on cooperative and random strategy [1]
introduce a novel structure, a superpixel-based patch, called SuperPatch. The proposed * Labeling examples: k=50 ANN
structure leads to a robust descriptor that includes the spatial information of the * SuperPatchMatch: Adaptation of PatchMatch to superpatch matching
superpixel neighborhood. The SuperPatchMatch method is also introduced to

generalize the PatchMatch algorithm to SuperPatches. Finally, we propose a * Initialization: Each superpixel A, is randomly associated to a superpixel B,
framework for fast segmentation and labeling from an image library, and demonstrate

the potential of our approach since we outperform, in terms of computational cost and * Propagation: Test of shifted matches of adjacent superpixels AJ’ ‘ =
accuracy, state-of-the-art methods based on learning. Irregular decompositions of A's neighborhood o
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‘ AT ERRNE NN QU Y (superpixel) ixel ti time
F. feature of A, (mean color, histogram, etc.) A (pixel) e
. PatchMatch 87.73% 87.02% 3.940s 0
Application to Segmentati CRBM [3] 94.10% X x houss
* Comparison of 2 superpatches: 5l & —| GLOC [3] 04.95% . 0,393 -
All superpixels of A, are compared to all superpixels of a superpatch B, * Multiple SuperPatchMatch (SPM) in a library: DCNN [4] x 95.24% x hours
: : : : SuperPatchMatch .08% 45% :
D irezA D jrers WA, B/ )d(F3, Ff? ) SPM is adapted to find matches in a library of example images T upertatchate 95.08% 95.45% 0.280s 0
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(4, By) Zilezf ijesz w( Ay, Bjr) k independent SPM give £-ANN T] in 7, with labels [(Tj) =m € {1,..., M} — SuperPatchMatch outperforms recent CNN architectures

example library — No necessary learning
Weighting according to relative registered positions,

w(AZ-/, Bj/) — €XP (—x;fcj,a:i/j//(f%) Wg (Az-/)ws (Bj/)

— fFi‘~7 =|— L

Application to Co

with L, 50 — C4r — Cyr + C; — Cj and wS(Ai/) = exp (_Hci — Cz/H%/o'g) Label fusion

SuperPatchMatch
* Superpixel-based color transfer (SCT) [5] between two images:
* Robustness of superpatches: A . :
Perp ?.g‘}:t * Decomposition into superpixels
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Matching displacement (optical flow display) between two decompositions: s"“'alg' » Matching with SuperPatchMatch (specific constraints)
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Decomposition n°1 Decomposition n°2 Superpixel matching  Superpatch matching
Map regularization and labeling (highest probability): £(A;) = argmax L,,(A;) _ < L i TR il
— Accurate comparison of structures defined on irregular neighborhoods me{l,...,M} Images Superpixels Matched colors SCT color fusion result
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