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Decompose the image into regular blocks

Superpixels (since [Ren and Malik, 2003]):

Local grouping of pixels with homogeneous colors

Image Decomposition into blocks Average colors
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Robustness of state-of-the-art methods

What about the ability to handle texture?

Initial image SLIC [Achanta et al., 2012] ERGC [Buyssens et al., 2014] ETPS [Yao et al., 2015]

LSC [Chen et al., 2017] SNIC [Achanta et al., 2017] SCALP [Giraud et al., 2018]

TASP [Giraud et al., 2019]

→ All state-of-the-art methods severely fail at clustering textures

→ Introduce a texture homogeneity term using patch-based distances

→ K-means-based clustering approach (TASP) → high complexity

→ Nearest Neighbor-based Superpixel Clustering (NNSC)
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K-means-based Clustering Approach (TASP)

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means iterative refinement
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Fp = [lp, ap, bp] color in the CIELab space

Xp = [xp, yp] position

FSk
, XSk

average on pixels ∈ Sk

mk regularity parameter

Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk

→ Complexity CSLIC = O((h×w)×4×IterK-means)
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K-means-based Clustering Approach (TASP)

Pixel to superpixel texture homogeneity term:

→ Using patch-based distances

No complex texture classification approach

Remains in the same feature space than pixel to superpixel distances

High 

Low

Which patches to compare?
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K-means-based Clustering Approach (TASP)

Pixel to superpixel texture homogeneity term:

→ Nearest neighbor (NN) matching within the superpixel

Ability to find only similar texture patterns

Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]

Texture homogeneity distance:

dtexture(p, Sk) =
1

N

∑
pk∈Kp

1

n
‖FP (p) − FP (pk))‖2

EUSIPCO 2019 Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching 6/13



K-means-based Clustering Approach (TASP)

Pixel to superpixel texture homogeneity term:

→ Nearest neighbor (NN) matching within the superpixel

Ability to find only similar texture patterns

Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]

Texture homogeneity distance:

dtexture(p, Sk) =
1

N

∑
pk∈Kp

1

n
‖FP (p) − FP (pk))‖2

EUSIPCO 2019 Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching 6/13



K-means Clustering Approach

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means iterative refinement
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Fp = [lp, ap, bp] color in the CIELab space

Xp = [xp, yp] position

FSk
, XSk

average on pixels ∈ Sk

m regularity parameter

Distance between a pixel p and a superpixel Sk (SLIC):

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk

+ dtexture(p, Sk)

→ Complexity CSLIC = O((h×w)×4×IterK-means)
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K-means Clustering Approach

Texture-Aware SuperPixels (TASP) [Giraud et al., 2019]

Constrained K-means iterative refinement
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Fp = [lp, ap, bp] color in the CIELab space

Xp = [xp, yp] position

FSk
, XSk

average on pixels ∈ Sk

m regularity parameter

Distance between a pixel p and a superpixel Sk (TASP):

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk + dtexture(p, Sk)

→ Complexity CTASP = O((h×w)×4×IterK-means×IterNN)
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The proposed NNSC approach

NNSC: Nearest Neighbor-based Superpixel Clustering

Direct pixel label update using local NN search

...

Update of

Nearest neighbor search iteration #i

...

#i+1

No update of

Grid initialization 

...

... ...

Update of

#i+2...#N#1...#i-1

→ Complexity reduced to CNNSC = O((h×w)×IterNN)
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The proposed NNSC approach

NNSC: Nearest Neighbor-based Superpixel Clustering

Direct pixel label update using local NN search

Constrained PatchMatch (PM) [Barnes et al., 2009] algorithm:

Iteration #1

Initialization Propagation Random search
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The proposed NNSC approach

Aggregation of multiple clustering estimations from independent PM processes

...

Aggregation of M label maps:

Lfinal(p) = argmax
l∈{labels}

∑M
i=1 δLi

N
(p),l

→ Improve the robustness of the clustering
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Results - Qualitative comparison to state-of-the-art

On a composite natural texture image:

Initial image LSC [Chen et al., 2017] SNIC [Achanta et al., 2017]

SCALP [Giraud et al., 2018] TASP [Giraud et al., 2019] NNSC

CTI99: dataset of 10 images containing up to 16 different textures [Randen and Husoy, 1999]
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Results - Qualitative comparison to state-of-the-art

On a natural color image:

Initial image LSC [Chen et al., 2017] SNIC [Achanta et al., 2017]

SCALP [Giraud et al., 2018] TASP [Giraud et al., 2019] NNSC

BSD: dataset of 200 natural color images of size 321×481 [Martin et al., 2001]
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Results - Quantitative comparison to state-of-the-art

Standard ASA metric:
Superposition with image objects

Image Manual segmentation Superpixels
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→ Best performances on the two data types with the same parameters

→ Computational time from ≈ 60s for TASP → ≈ 1.5s for proposed NNSC
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Conclusion

Summary of contributions

New superpixel method robust to texture

Faster direct patch-based nearest neighbor framework

Accurate results on both texture and natural color datasets

Work in progress / Research perspectives

Use of advanced texture descriptors

Application to real data (3D medical, satellite, etc.)

Giraud and Berthoumieu [2019]
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Texture Superpixel Clustering from Patch-based
Nearest Neighbor Matching

Thank you for your attention

Check for source codes at

http://rgiraud.vvv.enseirb-matmeca.fr

http://rgiraud.vvv.enseirb-matmeca.fr
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K-means Clustering Framework

Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)m

Limitations:

Global regularity parameter → irregular borders with low m / inaccurate borders with high m.

Only local pixel color considered → not robust to texture.

m = 10 m = 60
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Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)m

Limitations:

Global regularity parameter → irregular borders with low m / inaccurate borders with high m.

Only local pixel color considered → not robust to texture.

m = 200 m = 500
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Robustness of state-of-the-art methods

What about textured images?

S
N

IC
[A

ch
a

n
ta

et
a

l.
,

2
0

1
7

]

m = 20 (default) m = 200 m = 500 m = 10000
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m = 0.075 (default) m = 0.8 m = 0.85 m = 1.0

→ Even with manual regularity tuning, no explicit consideration of texture information
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The proposed NNSC approach

Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012]

TASP

Ponderation with feature variance within superpixels:

mk = m exp

(
σ(Fp∈Sk

)

β

)
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Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012]

TASP

Ponderation with feature variance within superpixels:

mk = m exp

(
σ(Fp∈Sk

)

β

)

SLIC clustering distance [Achanta et al., 2012]:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)m
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The proposed NNSC approach

Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012] TASP

Ponderation with feature variance within superpixels:

mk = m exp

(
σ(Fp∈Sk

)

β

)

TASP clustering distance:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk
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The proposed NNSC approach - Impact of parameters
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Patch-size n Number of label map estimations M

EUSIPCO 2019 Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching 6/6


	Introduction
	K-means-based Clustering Approach (TASP)
	Proposed Nearest-Neighbor Superpixel Clustering (NNSC) approach
	Results
	Conclusion
	
	Appendix
	References


