SCALP: Superpixels with Contour Adherence using Linear Path

<u>Rémi Giraud^{1,2}</u>

remi.giraud@labri.fr

with Vinh-Thong Ta¹ and Nicolas Papadakis²

Superpixel Context	Simple Linear Iterative Clustering	The SCALP method	Results	Conclusion
0	000	00000	0000	0

Superpixel Context

Simple Linear Iterative Clustering

The SCALP method

Results

Conclusion

Results 0000 Conclusion O

Superpixel Context

Low-level representation of an image into homogeneous areas. Respect of image geometry (contrary to multi-resolution approach).

Properties:

- Adherence to the image contours
- Homogeneity of the color clustering
- Regularity/compactness of the decomposition

400 superpixels

400 superpixels

itext	Simple Linear Iterative Clustering	The SCALP method	Results
	•00	00000	0000

Conclusi

Simple Linear Iterative Clustering (SLIC) - (Achanta, et al. 2012)

- State-of-the-art results on standard superpixel metrics
- Produces regular superpixels in limited computational time

Constrained K-means clustering

Superpixel Context	Simple Linear Iterative Clustering	The SCALP method	Results	Conclusion
0	000			0

SLIC - Distance

Distance between pixel p, and average cluster C_k of S_k :

$$D(p, C_k) = d_c(p, C_k)^2 + d_s(p, C_k)^2 m$$

 $\begin{array}{ll} \mbox{Pixel } p = [(l_p, a_p, b_p), X_p] & d_c \mbox{ color distance} \\ \mbox{Average feature cluster } C_k = [(l_k, a_k, b_k), X_k] & d_s \mbox{ spatial distance} \end{array}$

Rémi Giraud (PICTURA)

SCALP: Superpixels with Contour Adherence using Linear Path

The SCALP method

Results 0000 Conclusion

SLIC - Limitations

Parameter m globally set for the whole image

SLIC result

Difficulty to maximize all aspects: Adherence to contours \neq Color homogeneity \neq Decompositon regularity

Superpixel Context	Simple Linear Iterative Clustering	The S
0	000	•000

Superpixels with Contour Adherence using Linear Path (SCALP)

 \rightarrow Enforces respect of image contours, color homogeneity and compactness at the same time

- Definition of the linear path to superpixel barycenter
- Additional features within the clustering distance

Superpixel Context	Simple Linear Iterative Clustering	The SCALP method
0	000	•0000

Results 0000 Conclusion O

Superpixels with Contour Adherence using Linear Path (SCALP)

 \rightarrow Enforces respect of image contours, color homogeneity and compactness at the same time

- Definition of the linear path to superpixel barycenter
- Additional features within the clustering distance

SCALP result

Rémi Giraud (PICTURA)

Superpixel Context O Simple Linear Iterative Clustering

The SCALP method

Results 0000 Conclusion

SCALP - Linear Path Definition

Path between pixel p at position X_p and superpixel S_k of barycenter X_k Near real-time computation (Bresenham, et al. 1965)

Superpixel Context O Simple Linear Iterative Clustering

The SCALP method

esults

Conclusion

SCALP - Features on Linear Path \mathbf{P}_p^k

Improvement of color distance:

$$d_c(p, C_k) = (l_p - l_{C_k})^2 + (a_p - a_{C_k})^2 + (b_p - b_{C_k})^2$$

$$\rightarrow d_c(p, C_k, \mathbf{P}_p^k) = \lambda d_c(p, C_k) + (1 - \lambda) \frac{1}{|\mathbf{P}_p^k|} \sum_{q \in \mathbf{P}_p^k} d_c(q, C_k)$$

Superpixel Context

Simple Linear Iterative Clustering

The SCALP method

Results

Conclusion O

SCALP - Features on Linear Path \mathbf{P}_p^k

Improvement of color distance:

$$d_c(p, C_k) = (l_p - l_{C_k})^2 + (a_p - a_{C_k})^2 + (b_p - b_{C_k})^2$$

$$\rightarrow d_c(p, C_k, \mathbf{P}_p^k) = \lambda d_c(p, C_k) + (1 - \lambda) \frac{1}{|\mathbf{P}_p^k|} \sum_{q \in \mathbf{P}_p^k} d_c(q, C_k)$$

Superpixel Context	Simple Linear Iterative Clustering	The SCALP method	Results	Conclusion
O		000€0	0000	O
SCALP From	nework			

SCALP Framework

Properties:

 \bullet Regularity/compactness of the decomposition \checkmark

- Homogeneity of the color clustering \checkmark
- Adherence to the image contours

Superpixel Context O	Simple Linear Iterative Clustering	The SCALP method	Results 0000	Conclusion O
SCALP Fram	ework			

Properties:

- Regularity/compactness of the decomposition
- Homogeneity of the color clustering \checkmark
- Adherence to the image contours \checkmark

Superpixel Context O Simple Linear Iterative Clustering

The SCALP method

esults 000 Conclusion

SCALP - Features on Linear Path \mathbf{P}_p^k

Use of Contour prior:

$$d_{\mathcal{C}}(p, C_k, \mathbf{P}_p^k) = 1 + \gamma \max_{q \in \mathbf{P}_p^k} \mathcal{C}(q)$$

Superpixel Context O Simple Linear Iterative Clustering

The SCALP method

sults

Conclusion

SCALP - Features on Linear Path \mathbf{P}_p^k

Use of Contour prior:

$$d_{\mathcal{C}}(p, C_k, \mathbf{P}_p^k) = 1 + \gamma \max_{q \in \mathbf{P}_p^k} \mathcal{C}(q)$$

Improved clustering distance:

$$D(p, C_k) = \left(d_c(p, C_k, \mathbf{P}_p^k) + d_s(p, C_k)m\right) d_{\mathcal{C}}(p, C_k, \mathbf{P}_p^k)$$

Rémi Giraud (PICTURA)

SCALP: Superpixels with Contour Adherence using Linear Path

The SCALP method

Results

Conclusion

Example Results

SCALP: Superpixels with Contour Adherence using Linear Path

The SCALP method

Results

Conclusion

Example Results

The SCALP method

Results 0000 Conclusion O

Quantitative Results

Validation on Berkeley segmentation dataset (BSD) (Martin, et al. 2001) 200 test images with human ground truth segmentations

- Undersegmentation Error (UE): Overlap with multiple objects
- Compactness: Regularity of the produced superpixels
- F-measure: Contour detection performances (PR) (Martin, et al. 2004)

Method	$UE\downarrow$	Compactness \uparrow	F-measure \uparrow
GC (Veksler, et al. 2010)	0.161	0.520	0.596
SEEDS (Van den Bergh, et al. 2012)	0.134	0.201	0.581
SLIC (Achanta, et al. 2012)	0.135	0.269	0.649
SCALP	0.130	0.278	0.673

Superpixel Context

Simple Linear Iterative Clustering

The SCALP method

Results

Conclusion

Quantitative Results (PR)

 Superpixel Context
 Simple Linear Iterative Clustering
 The SCALP method
 Results
 C

 0
 000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

Quantitative Results (PR) - Influence of parameters

Superpixel Context O	Simple Linear Iterative Clustering	The SCALP method	Results 0000	Conclusion •
Conclusion				

SCALP method summary

- New general method to use color and contour features along linear path
- Increase of contour adherence, compactness and respect of image objects
- Limited computational time (< 0.4s)

Work in progress

• Use of advanced color features (Li et al., 2015) \rightarrow State-of-the-art results

Perspectives

• Adaptation to supervoxels (3D and video)

SCALP: Superpixels with Contour Adherence using Linear Path

Rémi Giraud^{1,2}

remi.giraud@labri.fr

with Vinh-Thong Ta¹ and Nicolas Papadakis²

²IMB CNRS UMR 5251 - University of Bordeaux, FRANCE

Superpixel Metrics

Superpixel segmentation $\mathcal S$, Ground-truth segmentation $\mathcal G$

Precision-Recall Framework: (Average of superpixel boundaries on several scales)

$$R = |\mathcal{B}(\mathcal{S}) \cap \mathcal{B}(\mathcal{G})| / |\mathcal{B}(\mathcal{G})|$$
$$P = |\mathcal{B}(\mathcal{S}) \cap \mathcal{B}(\mathcal{G})| / |\mathcal{B}(\mathcal{S})|$$
$$F = (2.P.R) / (P + R)$$

Undersegmentation Error: (Overlap with multiple objects)

$$\mathsf{UE}(\mathcal{S},\mathcal{G}) = \frac{1}{|I|} \sum_{i} \sum_{k:S_k \cap G_i \neq \emptyset} |S_k \backslash G_i|$$

Achievable Segmentation Accuracy: (Respect of image objects)

$$\mathsf{ASA}(\mathcal{S},\mathcal{G}) = \frac{1}{|I|} \sum_k \max_i |S_k \cap G_i|$$

Compactness: (Regularity, circularity of the superpixels)

$$\mathsf{CO}(\mathcal{S}) = \frac{1}{|I|} \sum_{k} \frac{4\pi |S_k|^2}{|\mathcal{B}(S_k)|^2}$$

Rémi Giraud (PICTURA)

Quantitative Results (UE)

Quantitative Results on BSD (ASA)

SLIC - Limitations

m = 5m = 10m = 20m = 50

SCALP: Superpixels with Contour Adherence using Linear Path

References

- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods," *PAMI*, vol. 34, no. 11, pp. 2274–2282, 2012.
- M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool, "SEEDS: Superpixels extracted via energy-driven sampling," in *ECCV*, 2012, pp. 13–26.
- D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in *ICCV*, vol. 2, 2001, pp. 416–423.
- J. E. Bresenham, "Algorithm for computer control of a digital plotter," *IBM Syst. J.*, vol. 4, no. 1, pp. 25–30, 1965.
- O. Veksler, Y. Boykov, and P. Mehrani, "Superpixels and supervoxels in an energy optimization framework," in *ECCV*, 2010, pp. 211–224.
- D. R. Martin, C. C. Fowlkes, and J. Malik, "Learning to detect natural image boundaries using local brightness, color, and texture cues," *PAMI*, vol. 26, no. 5, pp. 530–549, 2004.