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Introduction

Large data → high computational times
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Decompose the image into regular blocks

Superpixels (since [Ren and Malik, 2003]):

Local grouping of pixels with homogeneous colors

Image Decomposition into blocks Average colors
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Introduction

Desired properties of superpixel methods:

Relatively fast to compute X

Limited parameter settings X

Both accurate and regular superpixels ∼

[Chen et al., 2017] [Chen et al., 2017]

→ Irregular borders on textured regions

GRETSI 2019 Texture-Aware Superpixel Segmentation 3/14



Introduction

Desired properties of superpixel methods:

Relatively fast to compute X

Limited parameter settings X

Both accurate and regular superpixels ∼

[Chen et al., 2017]

[Chen et al., 2017]

→ Irregular borders on textured regions

GRETSI 2019 Texture-Aware Superpixel Segmentation 3/14



Introduction

Desired properties of superpixel methods:

Relatively fast to compute X

Limited parameter settings X

Both accurate and regular superpixels ∼

[Chen et al., 2017] [Chen et al., 2017]

→ Irregular borders on textured regions

GRETSI 2019 Texture-Aware Superpixel Segmentation 3/14



Robustness of state-of-the-art methods

What about textured images?

Initial image ERS [Liu et al., 2011] SLIC [Achanta et al., 2012] ERGC [Buyssens et al., 2014]

ETPS [Yao et al., 2015] LSC [Chen et al., 2017] SNIC [Achanta et al., 2017] SCALP [Giraud et al., 2018]

→ All state-of-the-art methods severely fail at clustering textures
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Robustness of state-of-the-art methods

What about textured images?
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→ Even with manual regularity tuning, no explicit consideration of texture information

→ TASP: Texture-Aware SuperPixel segmentation method
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The SLIC method

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means iterative refinement
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Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)m

Fp = [lp, ap, bp] color in the CIELab space

Xp = [xp, yp] position

FSk
, XSk

average on pixels ∈ Sk

m regularity parameter
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The SLIC method

Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)m

Limitations:

Global regularity parameter → irregular borders with low m / inaccurate borders with high m.

Only local pixel color considered → not robust to texture.

m = 10 m = 60
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Global regularity parameter → irregular borders with low m / inaccurate borders with high m.

Only local pixel color considered → not robust to texture.
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The TASP method

Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012]

TASP

Ponderation with feature variance within superpixels:

mk = m exp

(
σ(Fp∈Sk

)

β

)
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The TASP method

Automatic adaptation of the regularity parameter:

SLIC [Achanta et al., 2012] TASP

Ponderation with feature variance within superpixels:

mk = m exp

(
σ(Fp∈Sk

)

β

)

TASP clustering distance:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk
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The TASP method

Pixel to superpixel texture homogeneity term:

→ Bench of filters?

Prior definition of filters

Cannot be precisely averaged over a superpixel

→ Patch-based distance?

No complex texture classification approach

Remains in the same feature space than pixel to superpixel distances

High 

Low
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The TASP method

Pixel to superpixel texture homogeneity term:

Which patches to compare?

→ Patch on the superpixel barycenter?

Not representative of the texture content

→ Nearest neighbor (NN) matching within the superpixel?

Ability to find only similar texture patterns
Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]

Texture homogeneity term:

dtexture(p, Sk) =
1

N

∑
pk∈Kp

1

n
‖FP (p) − FP (pk))‖2
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The TASP method

Pixel to superpixel texture homogeneity term:

SLIC [Achanta et al., 2012] TASP w/ dtexture

TASP w/ dtexture + dunicity

dtexture does not guarantee texture unicity within superpixels

→ dunicity forces the selection of patches pk close to the superpixel barycenter:

Spatial distance on selected patches:

dunicity(p, Sk) = 2.
1

N

∑
pk∈Kp

(
1− exp

(
−
‖Xpk

−XSk
‖2
2

s2

))
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Final TASP clustering distance:

D(p, Sk) = dcolor(Fp, FSk
) + dspatial(Xp, XSk

)mk + dtexture(p, Sk) + dunicity(p, Sk)mk
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Results - Qualitative comparison to state-of-the-art

On a very textured synthetic image:

Initial image SLIC [Achanta et al., 2012] ERGC [Buyssens et al., 2014] ETPS [Yao et al., 2015]

LSC [Chen et al., 2017] SNIC [Achanta et al., 2017] SCALP [Giraud et al., 2018] TASP

mix-Stripes: dataset of 10 images of size 300×400 with synthetic stripe textures
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Results - Qualitative comparison to state-of-the-art

On a composite natural texture image:

Initial image LSC [Chen et al., 2017] SNIC [Achanta et al., 2017]

Initial image SCALP [Giraud et al., 2018] TASP

mix-Brodatz: dataset of 100 images of size 300×400 with natural textures [Brodatz, 1966]
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Results - Qualitative comparison to state-of-the-art

On a natural color image:

Initial image LSC [Chen et al., 2017] SNIC [Achanta et al., 2017]

Initial image SCALP [Giraud et al., 2018] TASP

BSD: dataset of 200 natural color images of size 321×481 [Martin et al., 2001]
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Results - Quantitative comparison to state-of-the-art

Standard metrics:

Superposition with several objects: ASA

Contour detection: F-measure

Image Manual segmentation Superpixels

mix-Stripes mix-Brodatz BSD

(synthetic textures) (natural textures) (natural color)

Method ASA F ASA F ASA F

SLIC [Achanta et al., 2012] 0.7256 0.4048 0.7784 0.4607 0.9445 0.4706

ERGC [Buyssens et al., 2014] 0.6107 0.3717 0.7796 0.4677 0.9477 0.4571

ETPS [Yao et al., 2015] 0.7769 0.2953 0.7568 0.4354 0.9433 0.4710

LSC [Chen et al., 2017] 0.6979 0.3156 0.7908 0.4552 0.9503 0.4421

SNIC [Achanta et al., 2017] 0.6659 0.3529 0.7662 0.4815 0.9410 0.4617

SCALP [Giraud et al., 2018] 0.7307 0.3290 0.7977 0.4759 0.9499 0.4914

TASP 0.8706 0.4232 0.8139 0.4824 0.9503 0.4992

→ Best performances on the three data types with the same parameters

GRETSI 2019 Texture-Aware Superpixel Segmentation 13/14



Conclusion

Summary of contributions

Superpixel method robust to texture

Generic patch-based texture homogeneity term

No need for manual regularity setting

Accurate results on both texture and natural color datasets

Work in progress / Research perspectives

Improvement of computational time (EUSIPCO 2019)

Use of advanced texture descriptors

Application to real data (3D medical, satellite, etc.)

Giraud and Berthoumieu [2019]
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Texture-Aware Superpixel Segmentation

(Superpixels adaptés localement aux textures)

Thank you for your attention

Reference paper

[R. Giraud et al., Texture-Aware Superpixel Segmentation, ICIP 2019]

Check for source codes at

http://rgiraud.vvv.enseirb-matmeca.fr

http://rgiraud.vvv.enseirb-matmeca.fr
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