Texture-Aware Superpixel Segmentation

Rémi Giraud Bordeaux INP IMS Vinh-Thong Ta Bordeaux INP LaBRI Nicolas Papadakis

CNRS

IMB

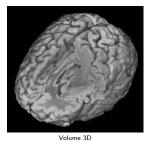
Yannick Berthoumieu

Bordeaux INP

IMS

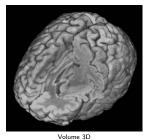
Large data \rightarrow high computational times

Image HD



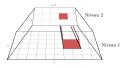
Large data \rightarrow high computational times \rightarrow Dimension reduction

Image HD



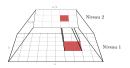
Large data \rightarrow high computational times \rightarrow Dimension reduction

• Regular multi-resolution: Decompose the image into regular blocks

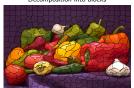


Large data \rightarrow high computational times \rightarrow Dimension reduction

- Regular multi-resolution: Decompose the image into regular blocks
- Superpixels (since [Ren and Malik, 2003]): Local grouping of pixels with homogeneous colors







Decomposition into superpixels

Average colors

Average colors

Desired properties of superpixel methods:

Relatively fast to compute

 \checkmark

Limited parameter settings

Desired properties of superpixel methods:

Relatively fast to compute

- **V**
- Limited parameter settings
- ullet Both accurate and regular superpixels $\,\sim\,$

Desired properties of superpixel methods:

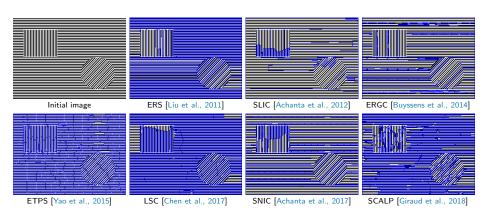
- Relatively fast to compute
- Limited parameter settings
- Both accurate and regular superpixels ~

[Chen et al., 2017]

 \rightarrow Irregular borders on textured regions

Robustness of state-of-the-art methods

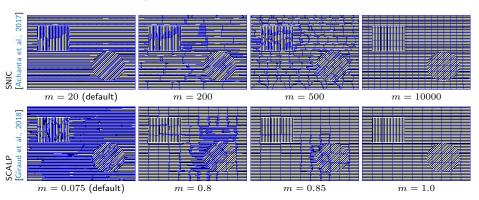
What about textured images?



→ All state-of-the-art methods severely fail at clustering textures

Robustness of state-of-the-art methods

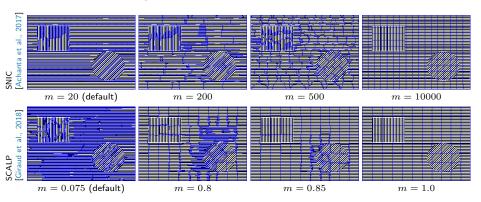
What about textured images?



ightarrow Even with manual regularity tuning, no explicit consideration of texture information

Robustness of state-of-the-art methods

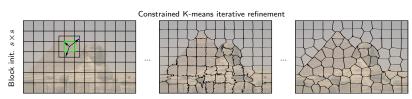
What about textured images?



- ightarrow Even with manual regularity tuning, no explicit consideration of texture information
- → TASP: Texture-Aware SuperPixel segmentation method

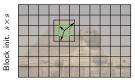
- Introduction
- The SLIC method
- The proposed TASP method
- Results
- Conclusion

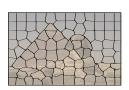
Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]



Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means iterative refinement





Distance between a pixel p and a superpixel S_k :

$$D(p, S_k) = d_{\mathsf{color}}(F_p, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k}) m$$

$$\begin{split} F_p &= [l_p, a_p, b_p] \text{ color in the CIELab space} \\ X_p &= [x_p, y_p] \text{ position} \\ F_{S_k}, X_{S_k} \text{ average on pixels} \in S_k \\ m \text{ regularity parameter} \end{split}$$

Distance between a pixel p and a superpixel S_k :

$$D(p, S_k) = d_{\mathsf{color}}(F_p, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k}) \textcolor{red}{m}$$

Limitations:

- ullet Global regularity parameter o irregular borders with low m / inaccurate borders with high m.
- Only local pixel color considered → not robust to texture

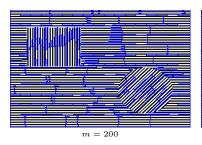


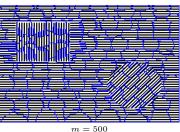
Distance between a pixel p and a superpixel S_k :

$$D(p, S_k) = d_{\mathsf{color}}(\mathbf{F_p}, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k}) m$$

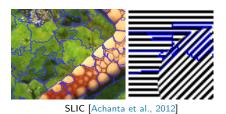
Limitations:

- ullet Global regularity parameter o irregular borders with low m / inaccurate borders with high m.
- ullet Only local pixel color considered o not robust to texture.



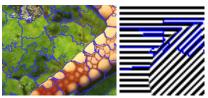


• Automatic adaptation of the regularity parameter:



ICIP 2019

• Automatic adaptation of the regularity parameter:

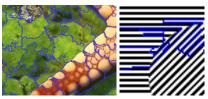


SLIC [Achanta et al., 2012]

Ponderation with feature variance within superpixels:

$$m_k = m \exp\left(\frac{\sigma(F_{p \in S_k})}{\beta}\right)$$

• Automatic adaptation of the regularity parameter:



SLIC [Achanta et al., 2012]

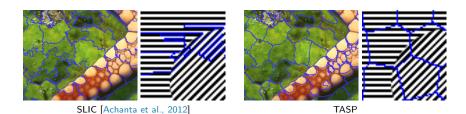
Ponderation with feature variance within superpixels:

$$m_k = m \exp\left(\frac{\sigma(F_{p \in S_k})}{\beta}\right)$$

SLIC clustering distance [Achanta et al., 2012]:

$$D(p, S_k) = d_{\mathsf{color}}(F_p, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k}) m$$

• Automatic adaptation of the regularity parameter:



Ponderation with feature variance within superpixels:

$$m_k = m \exp\left(\frac{\sigma(F_{p \in S_k})}{\beta}\right)$$

TASP clustering distance:

$$D(p,S_k) = d_{\mathsf{color}}(F_p,F_{S_k}) + d_{\mathsf{spatial}}(X_p,X_{S_k}) m_k$$

- Pixel to superpixel texture homogeneity term:
 - \rightarrow Bench of filters?

Prior definition of filters

Cannot be precisely averaged over a superpixel

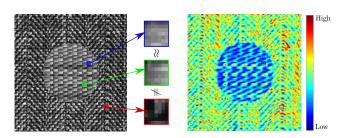
- Pixel to superpixel texture homogeneity term:
 - \rightarrow Bench of filters?

Prior definition of filters

Cannot be precisely averaged over a superpixel

→ Patch-based distance?

No complex texture classification approach Remains in the same feature space than pixel to superpixel distances



• Pixel to superpixel texture homogeneity term:

Which patches to compare?

→ Patch on the superpixel barycenter?
Not representative of the texture content

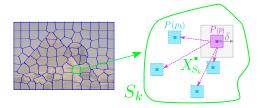
• Pixel to superpixel texture homogeneity term:

Which patches to compare?

→ Patch on the superpixel barycenter?
Not representative of the texture content

→ Nearest neighbor (NN) matching within the superpixel?

Ability to find only similar texture patterns Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]

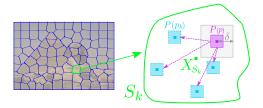


• Pixel to superpixel texture homogeneity term:

Which patches to compare?

- \rightarrow Patch on the superpixel barycenter?
 - Not representative of the texture content
- → Nearest neighbor (NN) matching within the superpixel?

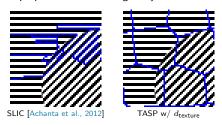
Ability to find only similar texture patterns Fast selection of N similar patches with PatchMatch [Barnes et al., 2009]



Texture homogeneity term:

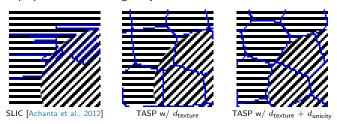
$$d_{\mathsf{texture}}(p, S_k) = \frac{1}{N} \sum_{p_k \in \mathcal{K}_p} \frac{1}{n} \big\| F_{P(p)} - F_{P(p_k)} \big) \big\|_2$$

• Pixel to superpixel texture homogeneity term:



 d_{texture} does not guarantee texture unicity within superpixels

• Pixel to superpixel texture homogeneity term:



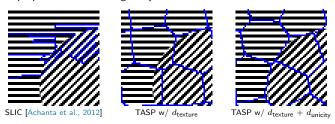
d_{texture} does not guarantee texture unicity within superpixels

 $\rightarrow d_{\text{unicity}}$ forces the selection of patches p_k close to the superpixel barycenter:

Spatial distance on selected patches:

$$d_{\text{unicity}}(p, S_k) = 2.\frac{1}{N} \sum_{p_k \in \mathcal{K}_p} \left(1 - \exp\left(-\frac{\|X_{p_k} - X_{S_k}\|_2^2}{s^2}\right)\right)$$

• Pixel to superpixel texture homogeneity term:



d_{texture} does not guarantee texture unicity within superpixels

 $\rightarrow d_{
m unicity}$ forces the selection of patches p_k close to the superpixel barycenter:

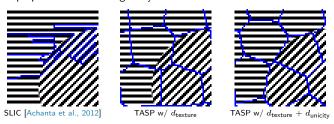
Spatial distance on selected patches:

$$d_{\mathrm{unicity}}(p,S_k) = 2.\frac{1}{N} \sum_{p_k \in \mathcal{K}_p} \left(1 - \exp\left(-\frac{\left\| X_{p_k} - X_{S_k} \right\|_2^2}{s^2} \right) \right)$$

SLIC clustering distance [Achanta et al., 2012]:

$$D(p, S_k) = d_{\mathsf{color}}(F_p, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k})m$$

• Pixel to superpixel texture homogeneity term:



d_{texture} does not guarantee texture unicity within superpixels

 $\rightarrow d_{\text{unicity}}$ forces the selection of patches p_k close to the superpixel barycenter:

Spatial distance on selected patches:

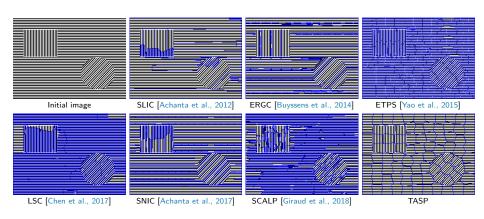
$$d_{\text{unicity}}(p, S_k) = 2.\frac{1}{N} \sum_{p_k \in \mathcal{K}_p} \left(1 - \exp\left(-\frac{\left\| X_{p_k} - X_{S_k} \right\|_2^2}{s^2} \right) \right)$$

Final TASP clustering distance:

$$D(p, S_k) = d_{\mathsf{color}}(F_p, F_{S_k}) + d_{\mathsf{spatial}}(X_p, X_{S_k}) \\ m_k + d_{\mathsf{texture}}(p, S_k) + d_{\mathsf{unicity}}(p, S_k) \\ m_k + d_{\mathsf{unicity}}(p, S_k) + d_{\mathsf{unicity}}(p, S_k) \\ m_k + d_{\mathsf{u$$

Results - Qualitative comparison to state-of-the-art

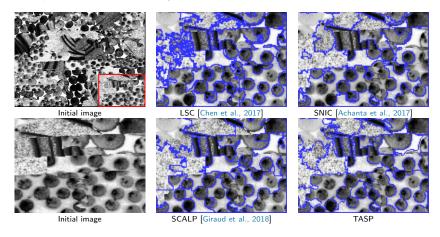
On a very textured synthetic image:



mix-Stripes: dataset of 10 images of size 300×400 with synthetic stripe textures

Results - Qualitative comparison to state-of-the-art

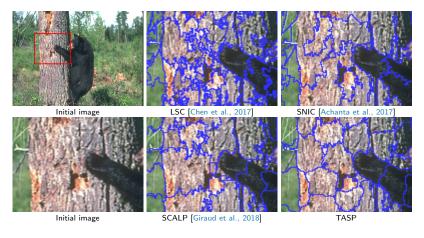
On a composite natural texture image:



mix-Brodatz: dataset of 100 images of size 300×400 with natural textures [Brodatz, 1966]

Results - Qualitative comparison to state-of-the-art

On a natural color image:



BSD: dataset of 200 natural color images of size 321×481 [Martin et al., 2001]

Results - Quantitative comparison to state-of-the-art

Standard metrics:

- Superposition with several objects: ASA
- Contour detection: F-measure

Manual segmentation

Superpixels

	<i>mix-Stripes</i> (synthetic textures)		mix-Brodatz (natural textures)		BSD (natural color)	
Method	ASA	F	ASA	F	ASA	F
SLIC [Achanta et al., 2012]	0.7256	0.4048	0.7784	0.4607	0.9445	0.4706
ERGC [Buyssens et al., 2014]	0.6107	0.3717	0.7796	0.4677	0.9477	0.4571
ETPS [Yao et al., 2015]	0.7769	0.2953	0.7568	0.4354	0.9433	0.4710
LSC [Chen et al., 2017]	0.6979	0.3156	0.7908	0.4552	0.9503	0.4421
SNIC [Achanta et al., 2017]	0.6659	0.3529	0.7662	0.4815	0.9410	0.4617
SCALP [Giraud et al., 2018]	0.7307	0.3290	0.7977	0.4759	0.9499	0.4914
TASP	0.8706	0.4232	0.8139	0.4824	0.9503	0.4992

^{ightarrow} Best performances on the three data types with the same parameters

Conclusion

Summary of contributions

- Superpixel method robust to texture
- Generic patch-based texture homogeneity term
- No need for manual regularity setting
- Accurate results on both texture and natural color datasets

Work in progress / Research perspectives

- Improvement of computational time (EUSIPCO 2019)
- Use of advanced texture descriptors
- Application to real data (3D medical, satellite, etc.)

Texture-Aware Superpixel Segmentation

Thank you for your attention

Check for source codes at http://rgiraud.vvv.enseirb-matmeca.fr

- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. *IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI)*, 34(11):2274–2282.
- Achanta et al., R. (2017). Superpixels and polygons using simple non-iterative clustering. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 4895–4904.
- Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. (2009). PatchMatch: A randomized correspondence algorithm for structural image editing. *ACM Trans. on Graphics* (*ToG*), 28(3).
- Brodatz, P. (1966). Textures: A photographic album for artists and designers. 1966. *Dover Publications*.
- Buyssens, P., Gardin, I., Ruan, S., and Elmoataz, A. (2014). Eikonal-based region growing for efficient clustering. *Image and Vision Computing*, 32(12):1045–1054.
- Chen, J., Li, Z., and Huang, B. (2017). Linear spectral clustering superpixel. *IEEE Trans. on Image Processing (TIP)*, 26(7):3317–3330.
- Giraud, R. and Berthoumieu, Y. (2019). Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching. In *European Signal Processing Conference (EUSIPCO 2019)*.
- Giraud, R., Ta, V.-T., and Papadakis, N. (2018). Robust superpixels using color and contour features along linear path. *Computer Vision and Image Understanding (CVIU)*, 170:1–13.

- Liu, .-Y., Tuzel, O., Ramalingam, S., and Chellappa, R. (2011). Entropy rate superpixel segmentation. In *Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, pages 2097–2104.
- Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In *Proc. of IEEE International Conference on Computer Vision (ICCV)*, volume 2, pages 416–423.
- Ren, X. and Malik, J. (2003). Learning a classification model for segmentation. In *Proc. of IEEE International Conference on Computer Vision (ICCV)*, pages 10–17.
- Yao, J., Boben, M., Fidler, S., and Urtasun, R. (2015). Real-time coarse-to-fine topologically preserving segmentation. In *Proc. of IEEE Conf. on Computer Vision and Pattern* Recognition (CVPR), pages 2947–2955.