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Objectifs et organisation

Organisation
• 5h20 de cours et 8h de TP
• Supports de cours : https://remi-giraud.enseirb-matmeca.fr/teaching/
• Notation : contrôle continu (contrôle de connaissance, rendu de TP)

Objectifs
• Comprendre comment fonctionnent les réseaux de neurones (profonds)
• Connaître les principales architectures et outils d’apprentissage profond
• Être capable de les implémenter/utiliser pour différentes applications de

vision par ordinateur dans un contexte d’apprentissage supervisé
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Introduction



Contexte

Intelligence Artificielle (IA)

Apprentissage 
automatique/machine

profond

Réseaux de 
neurones

Vision par
 ordinateur

Traitement 
d'images

2



Chronologie

Quelques dates clés dans la chronologie de l’apprentissage profond
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Vision par ordinateur – Dataset

ImageNet

ImageNet:




• 12 millions d’images étiquettées,
• 22 000 classes,
• Étiquettées par crowd-sourcing (Amazon Mechanical Turk).
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Vision par ordinateur – Classification d’images

ImageNet challenge (ILSVRC)

ILSVRC





• Challenge annuel depuis 2010,
• Limité à 1 000 classes,
• 1.2 million d’images de taille 256 × 256 pour l’entraînement,
• 50 000 images pour la validation 100 000 pour le test.
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Vision par ordinateur – Difficultés

Pourquoi est-ce difficile pour l’ordinateur ?

(a) Points de vue
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Vision par ordinateur – Difficultés

Pourquoi est-ce difficile pour l’ordinateur ?
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Vision par ordinateur – Difficultés

Pourquoi est-ce difficile pour l’ordinateur ?

(a) Points de vue (b) Conditions d’illumination (c) Variabilité intra-classe

(d) Occultations (e) Objets déformables (f) Proximité
inter-classes
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Explosion de l’apprentissage profond

AlexNet (Supervision) 1

• Large réseaux de neurones à convolution (62.3 millions de paramètres)
• 6 jours d’apprentissage sur 2 GPUs (GTX 580 3GB)
• Utilisation des nouveaux outils d’apprentissage profond

(calcul sur GPU, normalisation, optimisation, augmentation de données, ...)
• 1er au challenge ILSVRC2012 avec une erreur top-5 à 16.4% (2e : 26.2%).

→ Explosion de l’apprentissage profond depuis 2010 dans tous les domaines

1. [Krizhevsky et al., 2012] - ImageNet Classification with Deep Convolutional Neural Networks. In NeurIPS. 7



De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de tâches/métiers
Perte d’emploi / Adaptation de la société ?
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De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de tâches/métiers Diagnostic médical
Perte d’emploi / Adaptation de la société ? Biais de population ?

Bots conversationnels Big Data
Vérification des informations / Triche ? Utilisation des données privées ?

Interface de ChatGPT (OpenAI) [Lien : Données privées possédées par Google]
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De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance
Outil de contrôle / Abus ?
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De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance Navigation autonome
Outil de contrôle / Abus ? Responsabilité en cas d’accident ?
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De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance Navigation autonome
Outil de contrôle / Abus ? Responsabilité en cas d’accident ?

Génération automatique de contenus (vidéo, image, son)
Preuve de l’authenticité ? Graphistes ? Propriété intellectuelle ?

Vidéo de Vladimir Poutine interviewé Image générée automatiquement Générique de One Piece chanté
par son double DeepFake par Midjourney par Johnny Hallyday
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La dimension écologique

Entraîner des modèles, ça prend du temps et ça consomme

Quelques outils :
• Green Algorithms. How green are your computations?

https://calculator.green-algorithms.org/
• carbontracker

https://pypi.org/project/carbontracker/
• ...
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Plan du cours

1 Introduction
2 Apprentissage supervisé
3 Approches paramétriques
4 Réseaux de neurones
5 Apprentissage des paramètres
6 Réseaux de neurones à convolution (CNN)
7 Réseaux de neurones profonds
8 Techniques et outils

11



Apprentissage supervisé



Apprentissage supervisé

Différents types d’apprentissage

Intelligence Artificielle (IA)

Apprentissage 
automatique/machine

su
pe

rv
isé non 

par renforcement

supervisé
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Apprentissage supervisé

Différents types d’apprentissage

Apprentissage
supervisé

Apprentissage
non supervisé

Apprentissage
par renforcement

Déduire des "règles" associant 
une étiquette/valeur à une donnée

Déduire des "règles" 
structurant les données

L’agent interagit avec l’environnement 
et déduit des "règles" (actions) permet-
tant de maximiser une récompense.

Classification Régression Clustering

Apprentissage
automatique

Source : [Peng et al. 2021] - Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic
Inflammatory Diseases: Applications and Challenges. In Frontiers in Pharmacology.
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Apprentissage supervisé

Exemple d’un classifieur chat / chien

?

étiquette 1donnée 1
étiquette 2donnée 2
étiquette Ndonnée N

Nouvelle 
donnée

Prédiction 
d’une étiquette

« chat »

« chien »

« chat »
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Exemple d’un classifieur chat / chien
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Nouvelle 
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Apprentissage supervisé

Pouvez-vous résoudre ce problème d’apprentissage supervisé ?

0 ou 1 ?

1 0 0 1

0110

Donnée

É�que�e
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Apprentissage supervisé

Mais de quel problème parle-t-on au juste ?

0 ou 1 ?

Présence frelon(s)

Mat n

1750<id<5000

Présence frelon(s)

Mat n

1750<id<5000

Présence frelon(s)

Mat n

1750<id<5000

Présence frelon(s)

Mat n

1750<id<5000

Absence frelon

Après-midi

id>5000

Absence frelon

Après-midi

id<1750

Absence frelon

Après-midi

id<1750

Absence frelon

Après-midi

id<1750

Présence frelon

Après-midi

1750<id<5000

1 0 0 1

0110

15



Apprentissage supervisé

On veut que l’ordinateur apprenne à résoudre le problème suivant

Présence d’au moins un frelon

Donnée

Présence d’au moins un frelon

Présence d’au moins un frelonPrésence d’au moins un frelon

Absence de frelon Absence de frelon

Absence de frelon Absence de frelon

Présence d’au moins un frelon ?

ou 

Absence de frelon ?

É�que�e

15



Apprentissage supervisé

Une fois mis en forme pour l’ordinateur le problème devient

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78
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93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78
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... ... ... ... ...
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... ... ... ... ...
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16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

0 ou 1 ?

1 0

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

0 1

0110

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

Donnée

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

13 68 ... 33 43

83 35 ... 34 00

... ... ... ... ...

90 38 66 05 59

79 73 ... 93 34

76 41 ... 44 68

... ... ... ... ...

42 21 ... 32 08

49 54 ... 59 10

65 20 .... 16 45

... ... ... ... ...

73 95 ... 13 15

98 48 ... 19 51

38 17 ... 06 49

... ... ... ... ...

95 17 ... 54 04

16 43 ... 26 35

93 78 ... 37 72

... ... ... ... ...

53 14 ... 71 78

08 61 ... 90 76

02 45 ... 18 52

... ... ... ... ...

30 52 ... 91 29

18 24 ... 28 50

96 36 ... 70 68

... ... ... ... ...

98 09 ... 86 96

79 64 ... 57 11

65 75 ... 85 74

... ... ... ... ...

59 62 ... 92 26

46 17 ... 59 28

65 35 ... 90 12

... ... ... ... ...

28 47 ... 92 87

É�que�e
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Les règles déduites ne seront (probablement) pas interprétables → “Boîte noire”
C’est nous qui interprétons : “0” = présence frelon ; “1” = absence frelon
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Apprentissage supervisé

Résumé

• L’apprentissage supervisé utilise des données d’entraînement assorties
d’étiquettes

• L’ordinateur apprend “des règles”/une fonction qui effectue des calculs
sur des tableaux de valeurs numériques et produit une valeur numérique en
sortie.

• Dans le cas d’une classification, nous interprétons cette valeur numérique
en sortie comme une étiquette “sémantique”.

• Questions ?
• Quelle méthode choisir pour déterminer la fonction ?

Plus proches voisins, classification Bayésienne, SVM, réseaux de neurones, ...
• Comment déterminer les paramètres et hyperparamètres ?
• De quelles données avons-nous besoin ?
• Comment évaluer la qualité de la fonction ?
• ...
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Approches paramétriques



Fonction paramétrique

Différents formalismes

• Mathématique s = f(x; θ) θ = paramètres

• Informatique
(Python)

• Graphique
(Graphe de calcul)
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Fonction paramétrique

Exemple : transformation affine

• Mathématique s = f(x; θ = {W, b}) = Wx + b

• Informatique
(Python)

• Graphique
(Graphe de calcul)

Produit
matrice/vecteur Addi�on
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Approche paramétrique

Les différentes étapes

0 (« chat »)

1 (« chien »)

0 (« chat »)

0 (« chat »)

A
pp
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nt

ss
ag
e

A
pp

re
n�

ss
ag
e

19



Approche paramétrique

Les différentes étapes

0 (« chat »)

1 (« chien »)

0 (« chat »)

0 (« chat »)

A
pp

re
nt

ss
ag
e

A
pp

re
n�

ss
ag
e

19



Approche paramétrique

Les différentes étapes
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Approche paramétrique

Étape d’apprentissage (“training time”)

0 (« chat »)

scalaire

Où l est une fonction de coût (“loss function”) à choisir, permettant de
comparer la prédiction du réseau à l’étiquette
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Approche paramétrique

Étape d’apprentissage (“training time”)

coût d'entraînement
("training loss")

0 (« chat »)

1 (« chien »)

0 (« chat »)

scalaire

Où l est une fonction de coût (“loss function”) à choisir, permettant de
comparer la prédiction du réseau à l’étiquette
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Approche paramétrique

Étape d’apprentissage (“training time”)

problème
d'optimisation

0 (« chat »)

1 (« chien »)

0 (« chat »)

scalaire

Où l est une fonction de coût (“loss function”) à choisir, permettant de
comparer la prédiction du réseau à l’étiquette
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Approche paramétrique

Étape d’inférence (“test time”)

0 (« chat »)
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Approche paramétrique

Exemple : Régression linéaire polynomiale

Régression linéaire en 1D :
• Entrée : x ∈ R Sortie : y ∈ R

• Données d’entraînement :
Dtrain = {(Xtrain,1, Ytrain,1), . . . , (Xtrain,N , Ytrain,N )}

= {(x1, y1), . . . , (xN , yN )}

• Objectif : Apprendre f capable de prédire
s (ŷ) pour une entrée x : s = f(x)

20



Approche paramétrique

Exemple : Régression linéaire polynomiale

Régression linéaire en 1D :
• Entrée : x ∈ R Sortie : y ∈ R

• Données d’entraînement :
Dtrain = {(Xtrain,1, Ytrain,1), . . . , (Xtrain,N , Ytrain,N )}

= {(x1, y1), . . . , (xN , yN )}

• Objectif : Apprendre f capable de prédire
s (ŷ) pour une entrée x : s = f(x)

Régression linéaire polynomiale : On considère que des bonnes prédictions
suivent une forme polynomiale. Le modèle f peut être défini comme :

f(x; θ) = θ0 + θ1x + θ2x2 + . . . + θDxD =
DX

d=0
θdxd

où θ = [θ0, . . . , θD]T ∈ RD+1 sont les paramètres du modèle.
20



Approche paramétrique

Choix du coût l

Comment trouver un “bon” θ ?
→ Trouver θ∗ qui minimise la différence entre
les paires si = f(xi; θ∗) et yi dans Dtrain

Fonction de coût : erreur quadratique
l(yi, si) = (yi − si)2

= (yi − f(xi; θ))2

x 

y

D = 3

0 1

-1

0

1

Optimisation : Fonction convexe, donc un seul minimum global et calculable 1

θ∗ = argmin
θ

NX

i=1

l(yi, si) = argmin
θ

NX

i=1

(yi − f(xi; θ))2

Inférence :

stest = f(xtest; θ∗) = θ∗
0 + θ∗

1xtest + . . . + θ∗
DxD

test =
DX

d=0

θ∗
dxd

test

1. Pour les détails de la résolution :
https://eli.thegreenplace.net/2014/derivation-of-the-normal-equation-for-linear-regression 21



Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D ?

f(x; θ) =
DX

d=0

θdxd

x

y

D = 0

0 1

-1

0

1

Trop faible : grande erreur sur les
données d’entraînement, représentation
trop simple
→ Sous-apprentissage (underfitting)

D est appelé hyperparamètre du modèle
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Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D ?

f(x; θ) =
DX

d=0

θdxd

x  

y

D = 1

0 1

-1

0

1

Trop faible : grande erreur sur les
données d’entraînement, représentation
trop simple
→ Sous-apprentissage (underfitting)

D est appelé hyperparamètre du modèle
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Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D ?

f(x; θ) =
DX

d=0

θdxd

x 

y

D = 9

0 1

-1

0

1

Trop forte : le modèle apprend “par
cœur” les données d’entraînement,
représentation trop complexe
→ Sur-apprentissage (overfitting)

D est appelé hyperparamètre du modèle
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Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D ?

f(x; θ) =
DX

d=0

θdxd

x 

y

D = 3

0 1

-1

0

1

On cherche un bon compromis qui
trouve la tendance générale, mais sans
le bruit, pour généraliser aux nouvelles
données de test

D est appelé hyperparamètre du modèle
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Underfitting et overfitting

Choix de la dimension D

Plus le nombre de données d’entraînement augmente, plus le modèle est
susceptible de généraliser.

D = 9 D = 9

x 

y

N = 15

0 1

-1

0

1

x 

y

N = 100

0 1

-1

0

1
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Approche paramétrique

Exemple de régression : N = 5, X ∈ R et Y ∈ R
Xtrain = [ -3.1 1.2 4.3 6.2 9.1 ]
Ytrain = [ 23.7 31.3 79.9 101.9 205.5 ]

Fonction : f(x; θ) = θT [1 x . . . xD] hyperparamètre : D

Fonction de coût :

l(y, s) = (y − s)2

Optimisation :

θ∗ = argmin
θ

NX

i=1

l(Ytrain,i, f(Xtrain,i; θ))

= argmin
θ

NX

i=1

(Ytrain,i − f(Xtrain,i; θ))2

Inférence :
stest = f(xtest; θ∗) = θ∗

0+θ∗
1xtest+. . .+θ∗

DxD
test =

DX

d=0

θ∗
dxd

test

24



Apprentissage supervisé

Avantages et inconvénients d’une approche paramétrique

Avantages

• Inférence efficace → pas d’accès à la base de données étiquetées.
• Temps d’inférence constant → ne dépend pas de la taille de la base de

données étiquetées.

Inconvénients

• Choix de la fonction paramétrique et de ses hyperparamètres.
• Étape d’apprentissage → souvent longue et gourmande en calculs.
• Difficile de modifier la base de données étiquetées → nécessite de faire un

nouvel apprentissage.

25



Réseaux de neurones



Réseaux de neurones

Contexte

• Méthode d’apprentissage supervisée “inspirée” du cerveau humain.
• Consiste en l’inter-connexion de plusieurs petites unités appelées neurones.
• Introduit dans les années 50 (perceptron), très populaire dans les années

90, et réapparu en 2010 avec l’apprentissage profond.
• Aussi appelé Perceptron multicouche (Multi-Layer Perceptron (MLP)).
• Plus simplement, on verra que :

Réseau de neurones = Composition de fonctions paramétriques

26



Réseaux de neurones

Réseau de neurones = Composition de fonctions paramétriques

• Mathématique
s = f(x; θ) = fL(fL−1(...f2(f1(x, θ1); θ2)...; θL−1); θL)

• Informatique
(Python)

• Graphique
(Graphe de calcul)

27



Réseaux de neurones

Réseaux de neurones : Terminologie

Couche 1 Couche 2 Couche L-1 Couche L

Couche 0 Couche 1 Couche L-2 Couche L-1 Couche LCouche 2
= couche 
d’entrée

= couche 
de sort e= couches cachées

• Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau

28



Réseaux de neurones

Réseaux de neurones : Terminologie
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Réseaux de neurones

Réseaux de neurones : Terminologie

Couche 1 Couche 2 Couche L-1 Couche L

Couche 0 Couche 1 Couche L-2 Couche L-1 Couche LCouche 2
= couche 
d’entrée

= couche 
de sor�e= couches cachées

• Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
— Sens 2 : Un vecteur du réseau

• Profondeur du réseau de neurones = nombre de couches
• “Deep Neural Network” = réseau de neurones profond
• Architecture du réseau de neurones = choix du nombre de couches, du

type de chaque couche et de ses hyperparamètres, etc. 28



Perceptron multicouche (MLP)

Cachée

Entrée
Sortie

• Inter-connexion de “neurones artificiels” issus de :
– Transformation affine (connexions pondérées)
– Fonction d’activation non linéaire

• Chaque niveau dans le graphe est appelé couche :
• D’entrée x = {x1, x2, . . . , xN }
• Cachée(s) h(i) =

n
h

(i)
1 , h

(i)
2 , . . . , h

(i)
Ni

o

• De sortie s = {s1, s2, . . . , sNs }
• Chaque neurone dans les couches cachées agit

comme un classifieur ou un détecteur de motifs
• Réseau de neurones feed-forward (pas de cycle)
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Perceptron multicouche (MLP)

FC g
Cachée

Entrée
Sortie

– Transformation affine = FC (“Fully Connected”)
FC(x; θ = {W, b}) = Wx + b

h(1) =


W(1)x + b(1)
�




h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4


 =




w1
11 w1

12 w1
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w1
21 w1

22 w1
23

w1
31 w1

32 w1
33

w1
41 w1

42 w1
43




"
x1
x2
x3

#
+




b1
1

b1
2

b1
3

b1
4




W(k) = {wk
ij} les poids entre le neurone précédent j et le suivant i à la couche k

b(k) = {bk
i } les biais du neurone suivant i à la couche k
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Sortie
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Perceptron multicouche (MLP)

FC g
Cachée

Entrée
Sortie

– Transformation affine = FC (“Fully Connected”)
FC(x; θ = {W, b}) = Wx + b

– Fonction d’activation : g(x)

h(1) = g1


W(1)x + b(1)
�

h
(1)
1 = g1


w1

11x1 + w1
12x2 + w1
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�
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(1)
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33x3 + b1
3
�

h
(1)
4 = g1


w1

41x1 + w1
42x2 + w1

43x3 + b1
4
�

W(k) = {wk
ij} les poids entre le neurone précédent j et le suivant i à la couche k

b(k) = {bk
i } les biais du neurone suivant i à la couche k

gk la fonction d’activation appliquée à chaque élément de l’entrée à la couche k
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Perceptron multicouche (MLP)

FC g
Cachée

Entrée
Sortie

– Transformation affine = FC (“Fully Connected”)
FC(x; θ = {W, b}) = Wx + b

– Fonction d’activation : g(x)

h(1) = g1


W(1)x + b(1)
�

h
(1)
1 = g1


w1

11x1 + w1
12x2 + w1

13x3 + b1
1
�

h
(1)
2 = g1


w1

21x1 + w1
22x2 + w1

23x3 + b1
2
�

h
(1)
3 = g1


w1

31x1 + w1
32x2 + w1

33x3 + b1
3
�

h
(1)
4 = g1


w1

41x1 + w1
42x2 + w1

43x3 + b1
4
�

W(k) = {wk
ij} les poids entre le neurone précédent j et le suivant i à la couche k

b(k) = {bk
i } les biais du neurone suivant i à la couche k

gk la fonction d’activation appliquée à chaque élément de l’entrée à la couche k

Couche de neurones = composition de 2 fonctions paramétriques (ici)

29



Architecture d’un réseau de neurones

Entrée

Cachée

Sortie

Cachée

Cachée

Cachée

Cachée

Cachée

• Il peut avoir seulement une seule couche cachée (shallow network)
• Il peut avoir plusieurs couches cachées (deep network)
• Chaque couche (cachée ou de sortie) peut avoir une taille et une fonction

d’activation différentes
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Frontière de décision

L’architecture du réseau définit la forme de la limite de décision :

... ...

0

1

0 1

0

1

0 1

0

1

0 1

Complexité/capacité du
réseau

⇒
Compromis entre
généralisation et
sur-apprentissage
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Fonctions d’activation

Fonction de seuil : par exemple la fonction de Heaviside (échelon)

g(a) = H(a) =
�

0 if a < 0
1 otherwise.

• Des discontinuités dans les couches cachées rendent l’optimisation difficile
• Il est préférable d’utiliser des fonctions d’activation différentiable

Sigmoïde :

g(a) = 1
1 + e−a

∈ [0, 1]

• Approximation différentiable de la fonction échelon
• Seuil/comportement linéaire pour les fortes/faibles valeurs
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Fonctions d’activation

Fonctions d’activation “modernes” :

g(a) = max(a, 0)| {z }
ReLU

ou g(a) = log(1 + ea)| {z }
Softplus

• De nombreuses architectures de
réseaux de neurones récentes
utilisent la fonction d’activation
Rectified Linear Unit (ReLU) pour
les couches cachées.

• Elle entraîne beaucoup plus
rapidement, est plus expressive que
la fonction sigmoïde et évite le
problème de disparition du
gradient (vanishing gradient).
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Perceptron multicouche (MLP)

Composition de fonctions paramétriques : FC + ReLU

• Mathématique
f(x; θ) = MLP


x; θ =

�
W(l), b(l)

	
l

�
= FC(ReLU(...(ReLU(FC(x; θ1))...); θL)

• Informatique
(Python)

• Graphique
(Graphe de calcul)

FC FCFC

Couche cachée 1
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Perceptron multicouche (MLP)

Composition de fonctions paramétriques : FC + ReLU

f(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC

Couche cachée 1
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Perceptron multicouche (MLP)

Composition de fonctions paramétriques : FC + ReLU

f(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC

Couche cachée 1

Attention !

Dans cette représentation décomposant toutes les fonctions paramétriques :

h(j) = x(2j) et {W(2j−1), b(2j−1)} paramètres de la couche cachée j
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Perceptron multicouche (MLP)

Exemple de régression : N = 5, X ∈ R et Y ∈ R
Xtrain = [ -3.1 1.2 4.3 6.2 9.1 ]
Ytrain = [ 23.7 31.3 79.9 101.9 205.5 ]

Fonction : f(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC
D x 1 H₁ x 1 H₁ x 1 H₃ x 1 HL-2 x 1 C x 1HL-2 x 1

• Paramètres :
�

W(2j−1), b(2j−1)	
j=1,...,L/2

• Hyperparamètres : L (nombre de couches, contrôle la profondeur)
{H2j−1}j=1,...,(L−2)/2 (dimension, contrôle la largeur)
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Perceptron multicouche (MLP)

Exemple de régression : N = 5, X ∈ R et Y ∈ R
Xtrain = [ -3.1 1.2 4.3 6.2 9.1 ]
Ytrain = [ 23.7 31.3 79.9 101.9 205.5 ]

Fonction : f(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC
D x 1 H₁ x 1 H₁ x 1 H₃ x 1 HL-2 x 1 C x 1HL-2 x 1

Fonction de coût :

l(y, s) = (y − s)2

Optimisation :

θ∗ = argmin
θ

NX

i=1

(Ytrain,i − f(Xtrain,i; θ))2

Inférence : stest = f(xtest; θ∗)
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

FC FC

f(x) = wT
3 (ReLU (w1x + b1)) + b3

avec W(1) = w1 Vecteur colonne H × 1
b(1) = b1 Vecteur colonne H × 1
W(3) = wT

3 Vecteur ligne 1 × H
b(3) = b3 Scalaire 1 × 1

Nombre total de paramètres : 3×H + 1
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

FC FC

f(x) = wT
3 (ReLU (w1x + b1)) + b3 =

HX

j=1

w3,jReLU (w1,jx + b1,j) + b3

→ somme pondérée de fonctions ReLU

avec W(1) = w1 Vecteur colonne H × 1
b(1) = b1 Vecteur colonne H × 1
W(3) = wT

3 Vecteur ligne 1 × H
b(3) = b3 Scalaire 1 × 1

Nombre total de paramètres : 3×H + 1
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

Optimisation d’un MLP sur un profil de terrain : H = 10
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

Optimisation d’un MLP sur un profil de terrain : H = 100
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

Optimisation d’un MLP sur un profil de terrain : H = 1000
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Perceptron multicouche (MLP)

MLP à une couche cachée en 1D

Optimisation d’un MLP sur un profil de terrain : H = 1000

→ Illustration du théorème d’approximation universelle
(Hornik et al, 1989; Cybenko, 1989)

“Toute fonction continue peut être approximée par un réseau à une couche
cachée (shallow), avec un nombre suffisant de neurones.”
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Perceptron multicouche (MLP)

Réseau de classification ?
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Perceptron multicouche (MLP)

Réseau de classification ?

• “Cross-entropy” : CE(y, s) = −ln(py)

où py = exp(s[y])PC−1
c=0 exp(s[c])

(“softmax”, approx. dérivable de la fonction argmax)

-2,4

3,1

0,7

1,4

0,003

0.783

0.071

0.143

softmax avec

Ex. : Si y = 2, L = −ln(0.071) = 2.647 (prédiction très mauvaise)
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Perceptron multicouche (MLP)

Exemple de classification : N = 5, X ∈ R2 et Y ∈ {0, 1, 2}
Xtrain = [ (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2, -0.4) (-1.3, 2.3) ]
Ytrain = [ 0 0 1 1 2 ]

Fonction : hyperparamètres : H, Lf(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC
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Perceptron multicouche (MLP)

Exemple de classification : N = 5, X ∈ R2 et Y ∈ {0, 1, 2}
Xtrain = [ (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2, -0.4) (-1.3, 2.3) ]
Ytrain = [ 0 0 1 1 2 ]

Fonction : hyperparamètres : H, Lf(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC

Fonction de coût :

l(y, s) = −ln(softmax(s)[y])

Optimisation :

θ∗ = argmin
θ

NX

i=1

−ln (softmax (MLP (Xtrain,i; θ)) [Ytrain,i])

Inférence : stest = f(xtest; θ∗) classe prédite : argmax stest
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Perceptron multicouche (MLP)

Exemple de classification : N = 5, X ∈ R2 et Y ∈ {0, 1, 2}
Xtrain = [ (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2, -0.4) (-1.3, 2.3) ]
Ytrain = [ 0 0 1 1 2 ]

Fonction : hyperparamètres : H, Lf(x; θ) = MLP

x; θ =

�
W(l), b(l)	

l

�

FC FCFC

Fonction de coût :

l(y, s) = −ln(softmax(s)[y])

Optimisation :

θ∗ = argmin
θ

NX

i=1

−ln (softmax (MLP (Xtrain,i; θ)) [Ytrain,i])

Inférence :

L = 3, H = 30

stest = f(xtest; θ∗) classe prédite : argmax stest
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Perceptron multicouche (MLP)

“Cross-entropy” à 2 classes vs “Binary cross-entropy”

• “Cross-entropy” : CE(y, s) = −ln(py) où py = exp(s[y])
C−1P
c=0

exp(s[c])
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Perceptron multicouche (MLP)

“Cross-entropy” à 2 classes vs “Binary cross-entropy”

• “Cross-entropy” : CE(y, s) = −ln(py) où py = exp(s[y])
C−1P
c=0

exp(s[c])

• “Binary CE” : −yln(p) − (1 − y)ln(1 − p) où p = 1
1+exp(−s) (sigmoïde)
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Perceptron multicouche (MLP)

“Cross-entropy” à 2 classes vs “Binary cross-entropy”

• “Cross-entropy” : CE(y, s) = −ln(py) où py = exp(s[y])
C−1P
c=0

exp(s[c])

• “Binary CE” : −yln(p) − (1 − y)ln(1 − p) où p = 1
1+exp(−s) (sigmoïde)

Équivalent ! Juste une question d’implémentation
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