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Objectifs et organisation

Organisation
® 5h20 de cours et 8h de TP

® Supports de cours : https://remi-giraud.enseirb-matmeca.fr/teaching/

® Notation : contréle continu (controle de connaissance, rendu de TP)

Objectifs

® Comprendre comment fonctionnent les réseaux de neurones (profonds)
® Connaitre les principales architectures et outils d'apprentissage profond

® [Etre capable de les implémenter/utiliser pour différentes applications de
vision par ordinateur dans un contexte d’'apprentissage supervisé



Introduction



Intelligence Artificielle (IA)

Apprentissage
automatique /machine

Réseaux de
neurones

profond

Vision par
ordinateur

Traitement
d'images



Chronologie

Quelques dates clés dans la chronologie de I'apprentissage profond

Convolution Neural Networks for  Google Brain Project on

Handwritten Recognition 16k Cores
1958 Perceptron 1974 Backpropagation 1998 2012
awkward silence (Al winter) M I
1969 ~1980 1995 2006 2012
Perceptrons Multilayer SVMreigns  Restricted  AlexNet wins
book network Suppor Vector Machines Boltzmann ImageNet

Machine

IMAGENET

Perceptron criticized




Vision par ordinateur — Dataset

ImageNet

ImageNet:

r @ 12 millions d'images étiquettées,

® 22 000 classes,

N\

. @ Etiquettées par crowd-sourcing (Amazon Mechanical Turk).



Vision par ordinateur — Classification d’images

ImageNet challenge (ILSVRC)
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(@ Challenge annuel depuis 2010,

ILSVRC 4 ® Limité a 1 000 classes,
® 1.2 million d'images de taille 256 x 256 pour |'entrainement,

. ® 50 000 images pour la validation 100 000 pour le test.



Vision par ordinateur — Difficultés

Pourquoi est-ce difficile pour I'ordinateur ?

(a) Points de vue
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Vision par ordinateur — Difficultés

Pourquoi est-ce difficile pour I'ordinateur ?

(a) Points de vue (b) Conditions d’illumination (c) Variabilité intra-classe



Vision par ordinateur — Difficultés

Pourquoi est-ce difficile pour I'ordinateur ?

(c) Variabilité intra-classe

(d) Occultations



Vision par ordinateur — Difficultés

Pourquoi est-ce difficile pour I'ordinateur ?

(b) Conditions d’illumination (c) Variabilité intra-classe

(d) Occultations (e) Objets déformables



Vision par ordinateur — Difficultés

Pourquoi est-ce difficile pour I'ordinateur ?

(d) Occultations (e) Objets déformables (f) Proximité
inter-classes



Explosion de I’apprentissage profond

AlexNet (Supervision)

® | arge réseaux de neurones a convolution (62.3 millions de paramétres)
® 6 jours d'apprentissage sur 2 GPUs (GTX 580 3GB)
® Utilisation des nouveaux outils d'apprentissage profond
(calcul sur GPU, normalisation, optimisation, augmentation de données, ...)
® ler au chaIIenge ILSVRC2012 avec une erreur top-5 a 16.4% (2e : 26.2%).
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— Explosion de |'apprentissage profond depuis 2010 dans tous les domaines

1. [Krizhevsky et al., 2012] - ImageNet Classification with Deep Convolutional Neural Networks. In NeurlPS. 7



De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de taches/métiers
Perte d’'emploi / Adaptation de la société?

Mme Tang Yu, PDG du chinois NetDragon Websoft et de ses 6000 employés, est le premier robot a &tre nommé a la téte
d’une société. Disponible H24, elle ne touche aucun salaire. NetDragon Websoft



De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de taches/métiers
Perte d’'emploi / Adaptation de la société?

Mme Tang Yu, PDG du chinois NetDragon Websoft et de ses 6000 employés, est le premier robot a &tre nommé a la téte
d’une société. Disponible H24, elle ne touche aucun salaire. NetDragon Websoft

Diagnostic médical
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De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de taches/métiers
Perte d’'emploi / Adaptation de la société?

Mme Tang Yu, PDG du chinois NetDragon Websoft et de ses 6000 employés, est le premier robot a &tre nommé a la téte
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Bots conversationnels
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De nouvelles applications et de nouveaux enjeux/risques...

Automatisation de taches/métiers Diagnostic médical
Perte d’'emploi / Adaptation de la société? Biais de population?

Mme Tang Yu, PDG du chinois NetDragon Websoft et de ses 6000 employés, est le premier robot a &tre nommé a la téte
d’une société. Disponible H24, elle ne touche aucun salaire. NetDragon Websoft

Bots conversationnels Big Data
Vérification des informations / Triche? Utilisation des données privées ?
- ohaz_o,,ena,:% 4 Areyou ready? Here is all the data
B Facebook and Google have on you
Dylan Curran
£
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i, lear, '"o,eeed elp Wity
yoy Wi, a outs,, O
e ) quesr,bs ‘
Interface de ChatGPT (OpenAl) [Lien : Données privées possédées par Google]



De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance
Outil de contréle / Abus?
‘.‘r ‘I. 7 -_'_1 Lh: || :{: . ""{-‘ -" l

The Chinese state wants to control its citizens via a system of social scoring that punishes
behavior it doesn't approve of. Image Credit: Telecoms



De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance Navigation autonome
Outil de contréle / Abus? Responsabilité en cas d’accident ?
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The Chinese state wants to control its citizens via a system of social scoring that punishes Tesla said autopilot was activated during a fatal Model X crash last
behavior it doesn't approve of. Image Credit: Telecoms week in California.



De nouvelles applications et de nouveaux enjeux/risques...

Vidéo surveillance Navigation autonome
Outil de contréle / Abus?
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The Chinese state wants to control its citizens via a system of social scoring that punishes Tesla said autopilot was activated during a fatal Model X crash last
behavior it doesn't approve of. Image Credit: Telecoms week in California.

Génération automatique de contenus (vidéo, image, son)
Preuve de |'authenticité? Graphistes ? Propriété intellectuelle ?

WTOTU TOLA

MOCKBA CTY[LEHT CNBry

Vidéo de Vladimir Poutine interviewé Image générée automatiquement Générique de One Piece chanté
par son double DeepFake par Midjourney par Johnny Hallyday



La dimension écologique

Entrainer des modeles, ca prend du temps et ca consomme

The Extreme Cost
of Training Al Models

Estimated cost of training selected Al models
(in million U.S. dollars), by different calculation models

. Gemini 1('23)
Common carbon footprint benchmarks Google

in kgs of CO2 equivalent ChatGPT-4 (23)
i OpenAl

M Cloud computing calculation

B Own hardware calculation

Inflection-2 ('23) (amortized)

Roundtrip flight b/w NY 900 Inflection Al
and SF (1 passenger)

PaLM ('22)

Human life (avg. 1 5000 Google
yean | 7 ChatGPT-3 (20)

OpenAl

American life (avg. 1 16,400 OPT-1758B (22)
yean) Meta Al

US car including fuel DALL-E ('21)

57,153

(avg. 1 lifetime) OpenAl

Transformer (213M 0 50 100 150 200

parameters) w/ neural 284,019

architecture search Rounded numbers. Excludes staff salaries that can make up 29-49% of final cost (including equity)

Source: Epoch Al

statista %
Quelques outils :

® Green Algorithms. How green are your computations?
https://calculator.green-algorithms.org/

® carbontracker
https://pypi.org/project/carbontracker/

10



Plan du cours

@® Introduction

® Apprentissage supervisé

©® Approches paramétriques

O Réseaux de neurones

® Apprentissage des parametres

® Réseaux de neurones a convolution (CNN)
@ Réseaux de neurones profonds

® Techniques et outils

11



Apprentissage supervisé



Apprentissage superviseé

Intelligence Artificielle (IA)

Apprentissage
automatique /machine

par renforcement

12



Apprentissage superviseé

Différents types d’apprentissage

Apprentissage Apprentissage

supervisé non supervisé

Déduire des "régles" associant Déduire des "regles" [’agent interagit avec ’environnement

z * n_.» n 1
une étiquette/valeur a une donnée  structurant les données €t déduit des "regles (ac/tlons) permet-
tant de maximiser une récompense.

L L , L .
Classification Reégression Clustering
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Apprentissage superviseé

Exemple d’un classifieur chat / chien

donnée 1 <= rrrrrrrrr « chat » Ytrain,l fffffffffff > étiquette 1
donnée 2 <-i- « chien » Ytrain,Q et GtiquUette 2
donnée N = « chat » Ytrain,N i Etiquette N

Nouvelle édicti
‘ f ? 77777777777 - P1red|ct|(?n
donnée ° d'une étiquette
Stest

14



Apprentissage superviseé

Exemple d’un classifieur chat / chien

donnée 1 <= rrrrrrrrr « chat » Ytrain,l fffffffffff > étiquette 1
donnée 2 <t « chien » Ytrain,Q b étiquette 2
donnée N = « chat » Ytrain,N rrrrrrrrrrr » étiquette N
Nouvelle sdicti

) f —» « chat» > P1red|c’f|c.)n
donnée d'une étiquette

Stest

14



Apprentissage superviseé

Pouvez-vous résoudre ce probleme d’apprentissage supervisé ?

Donnée
Xtrain,6

Etiquette
Ytrain,6

Xtest | SteSt

15



Apprentissage superviseé

Mais de quel probleme parle-t-on au juste ?

S :

Présence frelon(s)

15



Apprentissage superviseé

On veut que l'ordinateur apprenne a résoudre le probleme suivant

Donnée
Xtrain,6

Absence de frelon

Etiquette
Ytrain,6

Présence d’au moins un frelon Absence de frelon

Présence d’au moins un frelon ?

f — ou

Absence de frelon ?

Stest

15



Apprentissage superviseé

Une fois mis en forme pour I'ordinateur le probleme devient

[ T T T T [ T T T T [ T T T T [ T T T T
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
79 73 93 34 | ||| 49 54 59 0 |||| 98 48 19 51 |||| 13 68 33 43 |||
76 41 44 68 65 20 16 45 38 17 06 49 83 35 34 00
Donnée | : ,
Xtra1n,6 : =y L LH i
: 21 32 08 ||| 73 95 13 15 ||| 95 17 54 04 ||]| 90 38 66 05 59 ||
Z, . H I I Ny I I I I T T T T
Ethuette I ] L NG ] I I I I I I ] ] ] ]
Y . "~ 08 61 \ 76 18 24 28 50 79 64 57 u ||| 16 43 26 35 ||
train,6 N N i |
.
02 X\ 18 52 96 36 70 68 ||N| 65 75 85 74 ||| 93 78 37 2]
30 52 91 29 E 09 86 96 || 59 62 92 26 | F 53 14 71 78 | H

46 17 59 28

65 35 90 12
e f —» Ooul?
28 47 92 87 | |F

Xtest SteSt

15



Apprentissage superviseé

Une fois mis en forme pour I'ordinateur le probleme devient

[ T T T T [ T T T T [ T T T T [ T T T T
[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [
79 73 93 34 | ||| 49 54 59 0 |||| 98 48 19 51 |||| 13 68 33 43 |||
76 41 44 68 65 20 16 45 38 17 06 49 83 35 34 00
Donnée | : ,
Xtra1n,6 : =y L LH i
: 21 32 08 ||| 73 95 13 15 ||| 95 17 54 04 ||]| 90 38 66 05 59 ||
Z, . H I I Ny I I I I T T T T
Ethuette I ] L NG ] I I I I I I ] ] ] ]
"~ 08 61 \ 76 18 24 28 50 79 64 57 11 16 43 26 35
Ytra1n,6 N N i |
.
02 X\ 18 52 96 36 70 68 ||N| 65 75 85 74 ||| 93 78 37 2]
30 52 91 29 3 09 86 96 || 59 62 92 26 | F 53 14 71 78 | H

46 17 59 28

65 35 90 12
e f —» Ooul?
28 47 92 87 | |F

Xtest SteSt

Les regles déduites ne seront (probablement) o

C’est nous qui interprétons : “0" = présence frelon; “1" = absence frelon
15



Apprentissage superviseé

® | 'apprentissage supervisé utilise des données d’entrainement assorties
d'étiquettes

® | 'ordinateur apprend “des régles” /une fonction qui effectue des calculs
sur des tableaux de valeurs numériques et produit une valeur numérique en
sortie.

® Dans le cas d'une classification, nous interprétons cette valeur numérique

en sortie comme une étiquette “sémantique’.

® Questions ?
® Quelle méthode choisir pour déterminer la fonction ?
Plus proches voisins, classification Bayésienne, SVM, réseaux de neurones, ...
Comment déterminer les paramétres et hyperparametres ?
De quelles données avons-nous besoin ?
Comment évaluer la qualité de la fonction?

16



Approches paramétriques



Fonction paramétrique

Différents formalismes

® Mathématique s = f(x;0) 6 = paramétres

def f(x, theta):
® |nformatique T

(Python)

® Graphique

(Graphe de calcul)

17



Fonction paramétrique

Exemple : transformation affine

® Mathématique s= f(x;0 ={W,b})=Wx+b

def f(xs W, b):

® |nformatique

= +
(Python) S X @W >
FEEUTES
; ;
® Graphique Produit
(Graphe de calcul) X ™ matrice/vecteur| ~| Addition =S

18



Approche paramétrique

Les différentes étapes

O(«chat») Ytrain,1

1 (« chien ») Ytrain,Q

f —» O (« chat »)

Stest .
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O(«chat») Ytrain,1

1 (« chien ») Ytrain,Q

f —» O (« chat »)

Stest .



Approche paramétrique

Les différentes étapes

Xtrain,l O (« chat ») Ytrain, 1

1(«chien» Ytrain,2

f —» O (« chat »)

Inférence

Stest "




Approche paramétrique

Etape d’apprentissage (“training time”)

< O
_>Q

Strain,l
f [ — > [ <— (O («chat ») Ytrain,l

Ou [ est une fonction de coiit (“loss function”) a choisir, permettant de
al

comparer la prédiction du réseau étiquette

19



Approche paramétrique

Etape d’apprentissage (“training time”)

5, (§|—>—> C » scalaire
Strain,l
Xtrain,l \f > \ [ < Of«chat») Ytrain,l
< N
.‘ Strain,2 .
Xtrain,2 - &0 N f > [ <— 1 (« chien ») Ytrain,2

Ou [ est une fonction de coit (“loss function™) a choisir, permettant de
al

comparer la prédiction du réseau étiquette
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Approche paramétrique

Etape d’apprentissage (“training time”)

BRPS

< Of(cchat») Yirain,1

< ] (« chien ») Ytrain72

Strain 1
Xtrain,l (\f " l
R S | \
, train,2
Xtrain,2 _ \ f h’\ [
1 j x S rain,
Xtrain,N = ‘SF > f ;ﬁ [

<«— O (« chat ») Ytrain,N

N
Zl (Ytrain,i7 f (Xtrain,i; 0)) -

1=1

Ou [ est une fonction de coiit (“loss function”) a choisir, permettant de

comparer la prédiction du réseau a I'étiquette
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Approche paramétrique

Etape d’apprentissage (“training time”)

< Of(cchat») Yirain,1

< ] (« chien ») Ytrain72

<«— O (« chat ») Ytrain,N

9 / %
ﬂ Strain 1
Xtrain,l \f " l
R S | \
E train,2
Xtrain,2 \ f h’\ [
1 j x S rain
Xtrain,N - ‘,SF > f ;ﬁ [

0" = arg min Zl (Yerain,is f (Xtrain,i; 0))

0 i

Ou [ est une fonction de coiit (“loss function”) a choisir, permettant de

comparer la prédiction du réseau a I'étiquette

19



Approche paramétrique

Etape d’inférence (“test time”)

9*

f - » O («chat»)

Stest

Stest — f (Xtest§ H*)

19



Approche paramétrique

Exemple : Régression linéaire polynomiale

Régression linéaire en 1D :

® Entrée: z € R Sortie: y € R
® Données d’entrainement : y
Dtrain = {(Xtrain,h Ytrain,l), ceey (Xtrain,N7 Ytrain,N)}

={(z1,91),---,(@N,yN)}

® QObjectif : Apprendre f capable de prédire
s (g) pour une entrée x : s = f(x)

20



Approche paramétrique

Exemple : Régression linéaire polynomiale

Régression linéaire en 1D :

® Entrée: z € R Sortie: y € R

® Données d'entralnement : 1o
y o\ © o_
D¢rain = {(Xtrain,h Ytrain,l)y KIS (Xtrain,N7 Ytrain,N)} '
(o)
:{(xl’yl),...,(xN,yN)} a1t
® Objectif : Apprendre f capable de prédire 0 1

s (y) pour une entrée = : s = f(x)

Régression linéaire polynomiale : On considere que des bonnes prédictions

suivent une forme polynomiale. Le modele f peut étre défini comme :
D
f(2;0) =60 + 012 + 02” + ...+ Opa® =) fgz*
d=0

olt 0 =[0p,...,0p]" € RP*! sont les paramétres du modele.
20



Approche paramétrique

Choix du cout [

Comment trouver un “bon” 67

— Trouver 8" qui minimise la différence entre
les paires s; = f(x;;0") et y; dans Dirain y

Fonction de coiit : erreur quadratique

Ui, si) = (yi — 53)° Al
= (yi — f(z:;0))”

0 1
Optimisation : Fonction convexe, donc un seul minimum global et calculable?
N N

0* = argmin [(y;, s;) = argmin (yi — f(%i;0))*
min ) _ min )

Inférence :

D
Stest — f(wtestg ) = U + 01 Ttest + ... + OpTiest = d Ltest
d=0

1. Pour les détails de la résolution :

https://eli.thegreenplace.net/2014/derivation-of-the-normal-equation-for-linear-regression 21



Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D?

D
f(z:0) =) Oz’
d=0

1 D =0
o

Y o R o Trop faible : grande erreur sur les

ot 7 e ] données d'entrainement, représentation

o trop simple
— Sous-apprentissage (underfitting)
1t
0 1

X

D est appelé hyperparametre du modéle

22



Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D?

D
f(z:0) =) Oz’
d=0

Trop faible : grande erreur sur les
données d’entrainement, représentation
trop simple

— Sous-apprentissage (underfitting)

D est appelé hyperparametre du modéle
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Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D?

D
f(z:0) =) Oz’
d=0

Trop forte : le modele apprend “par
coeur” les données d’entrainement,
représentation trop complexe

— Sur-apprentissage (overfitting)

0 T 1

D est appelé hyperparametre du modéle

22



Underfitting et overfitting

Choix de la dimension D

Comment trouver un “bon” D?

D
f(z:0) =) Oz’
d=0

On cherche un bon compromis qui
trouve la tendance générale, mais sans
le bruit, pour généraliser aux nouvelles

données de test

0 T 1

D est appelé hyperparametre du modéle

22



Underfitting et overfitting

Choix de la dimension D

Plus le nombre de données d’entrainement augmente, plus le modeéle est
susceptible de généraliser.

23



Approche paramétrique

Exemple de régression :

Xerain = [ -3.1 1.2

N=5, XceRetYcR

43 62 91 ]

Yirain = [ 23.7 31.3 79.9 101.9 205.5 ]

Fonction :

Fonction de cout :
l(y,s) = (y — 5)°

Optimisation :

N

0" = argmin Z l(Ytrain,ia f(Xtrain,i; 9))
0 1=1
N

= argmin Z (Ytrain,i — f (Xtrain,i; 9))2
6
1=1

Inférence :

Stest — f(xtesﬂ 9*) = 98+9T$test—|—- .

flz;0) =071 2 ... "]

hyperparametre : D

300
x  training data
o5 m— d=[1

=2

200 = d = 20

>150

100

50

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

* D _ E * _.d
‘+9Dxtest - detest

d=0
24



Apprentissage superviseé

Avantages et inconvénients d’'une approche paramétrique

Avantages

® |nférence efficace — pas d’'acces a la base de données étiquetées.

® Temps d'inférence constant — ne dépend pas de la taille de la base de
données étiquetées.

Inconvénients

® Choix de la fonction paramétrique et de ses hyperparametres.
® Etape d'apprentissage — souvent longue et gourmande en calculs.

® Difficile de modifier la base de données étiquetées — nécessite de faire un
nouvel apprentissage.

25



Réseaux de neurones



Réseaux de neurones

® Méthode d'apprentissage supervisée “inspirée” du cerveau humain.

® (Consiste en l'inter-connexion de plusieurs petites unités appelées neurones.
® Introduit dans les années 50 (perceptron), trés populaire dans les années
90, et réapparu en 2010 avec |'apprentissage profond.

® Aussi appelé Perceptron multicouche (

® Plus simplement, on verra que :

x = x©

o)

Y

o2

Y

fi

D)
>

f2

(2
e

x

g(L—1)

Y

L—2)
>

fr—1

(MLP)).
(L)
(L—=1) ¢ <L) — g
R I A S

Fc0) = fi (fror (ofo (1 (:60):62) ;00D ;0(8)
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Réseaux de neurones

® Mathématique

s = f(x;0) = fr(fr—1(...f2(f1(x,01);02)...;011);0L)

def neuralNetwork_forward(x, theta, L):
f1(x, theta[0])
f2(x1, theta[1])

® |nformatique

(Python)
fL(..., theta[L-1])
return s
o) 02 o(L—1) oL)
. — x(0) ¢ (1) ‘ (2) (L—2) # (L—1) ¢ (L) _
® Graphique S I A G P i B

(Graphe de calcul)
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Réseaux de neurones

Réseaux de neurones : Terminologie

o) 02 g(L—1) L)
< — x© () (2 (L-2) (1) (L) _ ¢
e SR e Y I e R B e A e
v \ \ \j
Couche 1 Couche 2 Couche L-1 Couche L

® Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
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Réseaux de neurones

Réseaux de neurones : Terminologie

o) 02 g(L—1) L)

V Couche 1 V Couche 2 V V Couche L-1 V Couche L V
Couche O Couche 1 Couche 2 Couche L-2 Couche L-1 Couche L
= couche S— - = couche

—
d’entrée de sortie

= couches cachées

® Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
— Sens 2 : Un vecteur du réseau
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Réseaux de neurones

Réseaux de neurones : Terminologie

o) 02 g(L—1) L)

V Couche 1 V Couche 2 V V Couche L-1 V Couche L V
Couche O Couche 1 Couche 2 Couche L-2 Couche L-1 Couche L
= couche S— - = couche

—
d’entrée de sortie

= couches cachées

® Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
— Sens 2 : Un vecteur du réseau

® Profondeur du réseau de neurones = nombre de couches
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Réseaux de neurones

Réseaux de neurones : Terminologie

o) 02 g(L—1) L)

V Couche 1 V Couche 2 V V Couche L-1 V Couche L V
Couche O Couche 1 Couche 2 Couche L-2 Couche L-1 Couche L
= couche S— - = couche

—
d’entrée de sortie

= couches cachées

® Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
— Sens 2 : Un vecteur du réseau

® Profondeur du réseau de neurones = nombre de couches

® "Deep Neural Network” = réseau de neurones profond
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Réseaux de neurones

Réseaux de neurones : Terminologie

o) 02 g(L—1) L)

V Couche 1 V Couche 2 V V Couche L-1 V Couche L V
Couche O Couche 1 Couche 2 Couche L-2 Couche L-1 Couche L
= couche S— - = couche

—
d’entrée de sortie

= couches cachées

® Couche (“layer”) :
— Sens 1 : Une fonction paramétrique du réseau
— Sens 2 : Un vecteur du réseau

® Profondeur du réseau de neurones = nombre de couches
® "Deep Neural Network” = réseau de neurones profond

® Architecture du réseau de neurones = choix du nombre de couches, du

type de chaque couche et de ses hyperparameétres, etc. -



Perceptron multicouche (MLP)

Cachée

® |nter-connexion de “neurones artificiels” issus de :

Entrée

Sortie — Transformation affine (connexions pondérées)

— Fonction d’activation non linéaire

® Chaque niveau dans le graphe est appelé couche :
/l

® D’entrée x ={x1,T2,...,ZN}
® Cachée(s) h() = {hgi),hg), .. ,hg\z,)}
S ® De sortie s ={s1,82,...,SN, }

® Chaque neurone dans les couches cachées agit
comme un classifieur ou un détecteur de motifs

® Réseau de neurones feed-forward (pas de cycle)
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Perceptron multicouche (MLP)

Cachée

Entrée

— Transformation affine = FC (“Fully Connected”)

FC(x;0 = {W,b}) =Wx+Db

h(1) — wDx + b(l))
[ (1)7] - - - 1
h%l) Wy Wiy Wiy 1 by
hg Wy Wgy  Wog b
(1) 1 1 1 T2| T |41
hq W3y Wgy W3y 3
(1) 1 1 1 3 pl
h, | Wq1  Wyg  Wyg | | V4

wk) = {wfj} les poids entre le neurone précédent j et le suivant ¢ a la couche k

b(*¥) = {b¥} les biais du neurone suivant i 3 la couche k
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Perceptron multicouche (MLP)

Cachée

Entrée

— Transformation affine = FC (“Fully Connected”)
FC(x;0 = {W,b}) =Wx+Db

h(1) — (w(l)x 4+ b(l))

hgl) = (wlla:l + w12332 + w13w3 + bl)
h;l) = (w21331 + w22x2 + w23333 + bl)
hgl) = (w31:131 + w32:c2 + w33x3 + bl)
hfll) = (wilazl + w42:c2 + w43x3 + bl)

wk) = {wfj} les poids entre le neurone précédent j et le suivant ¢ a la couche k

b(*¥) = {b¥} les biais du neurone suivant i 3 la couche k
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Perceptron multicouche (MLP)

Cachée

— Transformation affine = FC (“Fully Connected”)
Sortie FC(X, 0 — {w’ b}) = Wx —|— b

— Fonction d'activation : g(x)
/l
)= g (400 )
(1) o (w11331 + wi,x2 + wisx3 + by

1)
(1) = g1 (w21331 + w22x2 + w23333 —+ bl)
(1) ( )
)

Entrée

1
w31:131 + w32:c2 + w33x3 +b

— g1
1

4(11) = g1 (11]41331 + ’UJ42CC2 + ’U)43$3 + bl

wk) = {wfj} les poids entre le neurone précédent j et le suivant ¢ a la couche k

b(*¥) = {b¥} les biais du neurone suivant i 3 la couche k

gi. la fonction d’activation appliquée a chaque élément de I'entrée a la couche k
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Perceptron multicouche (MLP)

Cachée

Entrée

— Transformation affine = FC (“Fully Connected”)
FC(x;0 = {W,b}) =Wx+Db

— Fonction d'activation : g(x)

h() = g, (WUx + b™)

hgl) g1 (wix1 + w12332 + w13w3 + bl
hit =
h'i(),l) = Jg1 wglxl + ’LU32332 + w33x3 + bl

(
o (! )
= g1 (w 1 %1+ WooT2 + WyaT3 + bl)
( 5)
1)

h’z(Ll) = g1 (wilfcl + ’UJ42£U2 + ’U)43$3 + bl

wk) = {wfj} les poids entre le neurone précédent j et le suivant ¢ a la couche k

b(*¥) = {b¥} les biais du neurone suivant i 3 la couche k

gi. la fonction d’activation appliquée a chaque élément de I'entrée a la couche k

Couche de neurones = composition de 2 fonctions paramétriques (ici)
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Architecture d’un réseau de neurones

® |l peut avoir seulement une seule couche cachée (shallow network)
® |l peut avoir plusieurs couches cachées (deep network)

® Chaque couche (cachée ou de sortie) peut avoir une taille et une fonction

d’activation différentes
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Frontiere de décision

L'architecture du réseau définit la forme de la limite de décision :

O,
1 neurone —
g
‘ 1 Complexité/capacité du
réseau
=
24241 neurones .
® Compromis entre
généralisation et

sur-apprentissage

104+10+1 neurones
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Fonctions d’activation

Fonction de seuil : par exemple la fonction de Heaviside (échelon)

g(a):H(a):{ (1) if a<O

otherwise.

® Des discontinuités dans les couches cachées rendent |'optimisation difficile

® || est préférable d'utiliser des fonctions d'activation différentiable

Heaviside: H(x)
.......... sigmoid: (1 +e¢)7!

Sigmoide :

Activation

1
- —-— 1

Valeur

® Approximation différentiable de la fonction échelon

® Seuil/comportement linéaire pour les fortes/faibles valeurs
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Fonctions d’activation

Fonctions d’activation “modernes” :

g(a) = max(a,0) ou g(a)=1log(l+e")

RelLU Softplus

® De nombreuses architectures de

réseaux de neurones récentes

Nouvelle génération
4 ReLU: max(z,0)
Softplus: log(1 + €*)

utilisent la fonction d’activation
Rectified Linear Unit (ReLU) pour
les couches cachées.

3T Ancienne génération
Heaviside: H(z)
.......... sigmoid: (14 e~ *)7!

Activation
N

® Elle entraine beaucoup plus
rapidement, est plus expressive que

' la fonction sigmoide et évite le
Valeur probleme de disparition du
gradient (vanishing gradient).
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Perceptron multicouche (MLP)

® Mathématique

f(x;0) = MLP (x;60 = {w(l),b(l)}l) — FC(ReLU(...(ReLU(FC(x;61))...); 61,

def MLP_forward(x, theta, L):

® Informatique x1 = FC(x, theta[0])
x2 = RelLU(x1)
(Python) x3 = FC(x2, theta[2])
s = FC(..., theta[L-1])
return s
W p® WE) p®) W) p)
_ < — x(© L e <2 L 3 L) (L) L D) — g
® Graphique = owlFC s/ ol I S R e | X0

(Graphe de calcul)
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Perceptron multicouche (MLP)

Composition de fonctions paramétriques : FC + RelLU

f(x;0) = MLP (x;0 = {w'", b(l)}l)

7 b W®) b WD po)

< — x(0 i D) (2 L 3 T2 (L) L <) — g
T s FCl T e FC e /T M FC T e
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Perceptron multicouche (MLP)

Composition de fonctions paramétriques : FC + RelLU

f(x;0) = MLP (x;6 = {w"”,b'" } )

W(l)7 b W(3), b3 W(L)7 b(L)
x — x(0) i x (1 %< (2) L x(3) x(L=2) +(L—=1) L x (L) — S
RN ol e 4 = ol RO ) S N o) .
Attention!

Dans cette représentation décomposant toutes les fonctions paramétriques :

h) = x2) et {WZ~1 b2I=DY parametres de la couche cachée j
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Perceptron multicouche (MLP)

Exemple de régression : N =5, X eRet Y R

Xerain = [-3.1 1.2 43 62 9.1 ]
Yerain = | 23.7 31.3 79.9 101.9 205.5 ]

Fonction : f(z;0) = MLP (95; 0 = {W(l)ab(l)}l)

W p) NORNC) (@) pD)
HFC HJH FC"»""»JH FC‘»
Dx1 H,x1 H,x1 H,x1 Hoox1 Hoox 1 Cx1

® Parametres : {W(Qj_l)ab(2j_1)}j:1 L/2

® Hyperparametres : L (nombre de couches, contrdle la profondeur)
{H2j-1}j=1,. (L—2)/2 (dimension, contrdle la largeur)
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Perceptron multicouche (MLP)

Exemple de régression : N =5, X eRet Y R

Xerain = [-3.1 1.2 43 62 9.1 ]
Yerain = | 23.7 31.3 79.9 101.9 205.5 ]

Fonction : f(z;0) = MLP (90; 0 = {W(l)ab(l)}l)

W p) NORNC) (@) pD)
HFC HJH FC"»""»JH FC‘»
Dx1 H,x1 H,x1 H,x1 Hoox1 Hoox 1 Cx1

Fonction de cout :

L 2
l(y7 S) - (y T S) x  training data
=2 |H =10 of
. . . b L=3|H=100 /
Optimisation : m | =5 | H = 1000
1501
N =
« 2 1001
0" = argmin g (Ytrain,i - f(xtrain,i§ 9))
0 501
=1

Inférence :  Stest = f(xtesﬁ 0*) 36



W pO

:

x = x(0)

FC

Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

W p®)

i

f(z) = ws (ReLU (wiz + b1)) + b3

FC |

Vecteur colonne H x 1

Vecteur colonne H x 1

Vecteur ligne 1 x H
Scalaire 1 x 1

Nombre total de parametres : 3xH + 1

x3) =5




W pO

:

x = x(0)

FC

Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

W p®)

i

FC |

H
f(z) =ws (ReLU (wiz + b)) + bz = Zw;;,jReLU (w1 jx+ bi,;) + b3

— somme pondérée de fonctions ReLLU

Vecteur colonne H x 1

Vecteur colonne H x 1

Vecteur ligne 1 x H
Scalaire 1 x 1

Nombre total de parametres : 3xH + 1

x3) =5




Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

Optimisation d'un MLP sur un profil de terrain : H = 10

1000
800 4

600 4

400 1 ' 47\ \ |"-' 7Y

200 4

T T T T T T T
=15 =1.0 =05 0.0 05 1.0 15
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Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

Optimisation d'un MLP sur un profil de terrain : H = 100

1000

800 4

600 A

400 A

200 4

T T T T T T T
=15 =1.0 =05 0.0 05 1.0 15
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Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

Optimisation d'un MLP sur un profil de terrain : H = 1000

1000 4

800 4

600 4

400

200

T T T T T T T
=15 =1.0 =05 0.0 05 1.0 15
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Perceptron multicouche (MLP)

MLP a une couche cachée en 1D

Optimisation d'un MLP sur un profil de terrain : H = 1000

1000 4

800 4

600 4

400

200

T T T T T T T
=15 =1.0 =05 0.0 05 1.0 15

— lllustration du théoreme d'approximation universelle
(Hornik et al, 1989; Cybenko, 1989)
“Toute fonction continue peut étre approximée par un réseau a une couche
cachée (shallow), avec un nombre suffisant de neurones.”
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Perceptron multicouche (MLP)

Réseau de classification ?
0 c

SERC ; yE{O,l,Q,...,C—l}

‘N
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Perceptron multicouche (MLP)

Réseau de classification ?

(4] C
X j{’ SGRC ; yE{O,l,Q,,C_].}

® “Cross-entropy” : CE(y,s) = —In(py)

exp(s
ou py = C_Il)( v) (“softmax”, approx. dérivable de la fonction argmax)
D oo €xp(sc])
-2,4 0,003
3,1 0.783 3
—» softmax avec Z pi=1
0,7 0.071 i=0
1,4 0.143 pr[/ 2 O pOU.I' i — O, ceey 3
s € R* p € A?

Ex.: Siy=2, L=—-In(0.071)=2.647 (prédiction trés mauvaise)
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Perceptron multicouche (MLP)

Exemple de classification : N =5, X c R* et Y € {0,1,2}

Xerain = | (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2,-0.4) (-1.3,2.3) ]
Ytrain — [ 0 0 1 1 2 }

Fonction :  f(x;0) = MLP (ac; 0 = {w(l),b(l)}l) hyperparametres : H, L
STCOIRNED WCHENE WE) pE)

Y (D) «(2) Y 3 (L-2) S (L—1) Y D) _ o

—P FC —»_/—» FC —»—»_/4» FC P
2x1 Hx1 H x1 H x1 Hx1 Hx1 3x1
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Perceptron multicouche (MLP)

Exemple de classification : N =5, X c R* et Y € {0,1,2}

Xerain = | (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2,-0.4) (-1.3,2.3) ]
Ytrain — [ 0 0 1 1 2 }

Fonction :  f(x;0) = MLP (ac; 0 = {w(l),b(l)}l) hyperparametres : H, L

FCOINEY W3 b® PN NES
« — x(O + (D) «(2) * 3 (=2 (L—1) + (D) — ¢
—p» ct—®_ S Ffct—®»---—m_ S Fc| >
2x1 Hx1 Hx1 Hx1 Hx1 Hx1 3x1

Fonction de cout :

l(y,s) = —In(softmax(s)|y])

X
Optimisation : | .
N ®
.
0™ = argmin E —In (softmax (MLP (Xtrain,i; 0)) [Ytrain,i]) x
0 ’L:l 3 2 -1 0 1 2 3 4 5
Inférence : Stest = [ (Ttest; 07) classe prédite : argmax Stest
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Perceptron multicouche (MLP)

Exemple de classification : N =5, X c R* et Y € {0,1,2}

Xerain = | (1.2, -3.4) (2.3, 2.8) (-0.7, 1.2) (3.2,-0.4) (-1.3,2.3) ]
Ytrain — [ 0 0 1 1 2 }

Fonction :  f(x;0) = MLP (ac; 0 = {w(l),b(l)}l) hyperparametres : H, L

w(l)7 b w(3), b3 W(L)7 b(L)
w — % (0) + « (D) «(2) * «(3) ~(L—2) ~<(L—1) * <L) — ¢
—p ctH—®»_/——®» fclt ®»---—®» S FCl»
2x1 H x1 Hx1 Hx1 Hx1 Hx1 3x1

Fonction de cout :

l(y,s) = —In(softmax(s)|y])

Optimisation :
N
0™ = argmin Z —In (softmax (MLP (Xtrain,i; 0)) [Ytrain,i])
¢ =1 3 =2
Inférence : Stest = Jf (Ttest; 07) classe prédite : argmax Stest
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Perceptron multicouche (MLP)

“Cross-entropy” a 2 classes vs “Binary cross-entropy”

6 C

X ¢ s € R? % y €10,1}
—»> f > [ <
e “Cross-entropy” : CE(y,s) = —In(p,) ob p, = =Pl

> exp(sle])

c=0
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Perceptron multicouche (MLP)

“Cross-entropy” a 2 classes vs “Binary cross-entropy”

6 C

X ¢ s € R? % y €10,1}

—»> f > [ <
e “Cross-entropy” : CE(y,s) = —In(p,) ob p, = =Pl

> exp(s[e])
0 C

X # s € R f y € {0,1}

> f > [ -«
® “Binary CE” :  —yln(p) —(1-y)ln(1 —p) ol P= yro—g (sigmoide)
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Perceptron multicouche (MLP)

“Cross-entropy” a 2 classes vs “Binary cross-entropy”
0 C
¢ S € RQ f (A= {07 1}
-

X
> f > [
® “Cross-entropy” : CE(y,s) = —In(p,) ou py= Cffp(s[y])
> exp(s[e])
c=0
v c
X # s e R f y €1{0,1}
® “Binary CE” : —yln(p)—(1—y)ln(1—p) ou p= 1+eX}O(_S) (sigmoide)

Equivalent | Juste une question d’implémentation

41



