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Introduction



Objectives

• Knowledge of vocabulary
Shape, pattern, descriptor, feature extraction, local, dense, keypoints,
invariance, supervised, unsupervised, etc...

• Basic principles of pattern recognition methods for image
analysis.

• Basic principles of data classification using unsupervised and
supervised methods.

• Python implementation and evaluation of some approaches for
pattern recognition.
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Organization

Pattern Descriptors

Course Shape descriptors & extraction 2h40
Practical no1 Shape recognition (Hough Transform) 4h
Course Pattern descriptors & Dimension reduction 2h40
Practical no2 Texture classification (LBP, HOG) 4h

Classification Methods

Course Unsupervised classification 1h20
Practical no1 Point cloud clustering 4h
Course Supervised classification 1h20
Practical no2 Digits classification 4h

Evaluation Practicals and tests (x0.5) + Final exam (x0.5) 1h320 (04/11)
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Vocabulary

“Pattern Recognition” “Reconnaissance de Formes”

• A shape or pattern is a simplified representation of an entity of the
external world by a numerical object (graph, vector, word, ...).

Examples: Characters, Digital print, Facial photography, Voice signal, ...

• Pattern Recognition (PR) consists of defining models allowing the
automation of artificial perception tasks usually performed by the brain
and the human sensory system.

Examples:
- Learn to recognize different patterns extracted from one or more observations
- Propose decisions based on the specificities of patterns

• In this course, focus on PR in image analysis that includes the study of:
- Shape/forme, binary shape that can be defined by its contour

- Pattern/motif = Region + {Properties} (color, orientation, repetition)
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Applications et sectors

Production chains
- Posture control
- Defect detection
- Adaptation of treatments (fruit size, etc.)

Civil
- Text recognition (OCR) (postal sorting, radar control)
- Autonomous driving
- Home automation (voice recognition)

Life and earth sciences
- Recognition of fossil or organic species
- Satellite imagery (crops, natural disasters, ...)

Security
- Detection of prohibited objects at boarding gates
- Biometrics (fingerprints, vocal, retinal, facial, ...)
- Target identification and tracking

Robotics - Navigation

Medicine
- Anomaly detection
- Surgical assistance

4



Machine perception

There are many examples of complex situations where the machine recognition
process can fail:

- Contours based on human perception
- Information too degraded, noise, blur, illumination
- High intra-class variability
- High inter-class proximity, for example B and 13 have a similar shape

→ Learning process to identify the issues and understand the machine
perception on these examples
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PR conception cycle

Outside world

Acquisition

Pre-processing

Extraction

Features/Descriptor

Model

Decision

Classification

Pre-processing

Learning data

Extraction

Learning/estimation

Features/Descriptor

Supervision
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Descriptor Properties

What would be the desired (or not) descriptor properties?

A “good” descriptor should provide: “similar” values for “similar” patterns

“different” values for “different” patterns

Properties:

• Invariances to - ability to identify the object even if:
• Rotation: the object is rotated, its orientation is modified
• Translation: the object is moved to a different location
• Scale: the image/object is zoomed in or out
• Illumination: there is change in brightness and contrast in the image

• Robustness to noise, deformations, occlusions
• Need for parameter tuning
• Time to compute
• Size
• ...
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Classifier Properties

What would be the desired (or not) classifier properties?

A “good” classifier should accurately predict the class corresponding to an
input descriptor

Properties:

• Accuracy (on what evaluation metric?)
• Allowing errors
• Use/need of learning data
• Robustness to outliers (very different features compared to the dataset)
• Binary decision/class probabilities
• Fast to train/apply
• Need for parameter tuning
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Shape vs Pattern Methods

Different contexts of shape/pattern recognition in image analysis

Shape
Binary shape Image containing shapes

- Freeman chain coding
- Fourier
- Signature
- Tangent sequence
- Curvature scale space
- ...

- Structure
- Geometric
- ... 

- Radon transform
- Hough transform
- ...

Pattern
Local (keypoints)

- Harris corners
- Shi-Tomasi corners
- FAST corners
- SIFT keypoints
- SURF keypoints
- ...

- SIFT
- SURF
- BRIEF
- ORB
- ...

Global (all pixels) Block-wise (all pixels)

- Co-occurrence matrix
- Fourier transform
- Histogram of dense features
  (intensity, LBP, ...)
- ...

- Block-wise histograms of
  dense features
- Histogram of Oriented
  Gradients (HOG)
- Gradient Field HOG
- ...

Keypoint detectors Global descriptors Block-wise descriptors

Local descriptors

Contour descriptor
and extraction

Shape detection

Region descriptor
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1 Introduction

2 Shape descriptors

Contour descriptors

Region descriptors

Hough Transform

Practical no1

3 Pattern descriptors

Dense Feature Extraction

Keypoints/Local descriptors

Global descriptors

Block-wise descriptors

4 Dimension reduction

Curse of Dimensionality

Principal Component Analysis

Application example

Practical no2



Shape descriptors



1 Introduction

2 Shape descriptors

Contour descriptors

Region descriptors

Hough Transform

Practical no1

3 Pattern descriptors

Dense Feature Extraction

Keypoints/Local descriptors

Global descriptors

Block-wise descriptors

4 Dimension reduction

Curse of Dimensionality

Principal Component Analysis

Application example
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Shape Recognition

• Detection:
Localization and segmentation of the shape

Image Binarization Connected components Extraction (bounding box)

• Description:
Describe the shape with an appropriate set of features (descriptor)

• Identification/Classification/Recognition:
Find the class of the shape according to the problem (binary decision,

class probabilities)
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Taxonomy

Region descriptorContour descriptor

Global Structural

Area
Rectangularity
Eccentricity
Moments (geometric,
Zerrike, Legendre, 
Hu)
Angular Radial 
Transform
...

Convex hull
Bounding box
Skeleton
...

Global Structural

Perimeter
Compacity
Signature
Hausdorff Distance
Fourier descriptor
Curvature scale 
space
...

Freeman chain coding
Polygonal 
approximation
B-splines
...
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Contour vs Region

• Contour descriptor: Sequence of points (1D)
- Cartesian, complex or polar representation.
Freeman chain coding, polygons, etc...

- Ambiguity on proximity of contour points

• Region descriptor: Pixel matrix (2D)
- Geometric, moments, hull, skeletization, ...
- Not equivalent to the contour-based approach

contours externes identiques
régions différentes

→ Blur domains

eroded

eroded and deformed

region similarity

contour similarity 12



Freeman Chain Coding*

Definition: Coding of pixel movements along the contour of a shape

Motivation: Shapes can be well described by their contours. Such coding may
serve to describe binary images.

*Freeman et al., Computer Processing of Line-Drawing Images, ACM Computing Surveys, 1974
13



Freeman Chain Coding

• Coding: code = starting point + {movements}

Start from random point A, continue until coming back to A

• Resolution: Limited number N of local direction bits

4 directions (2 bits) 8 directions (3 bits) 8 directions
16 movements (4 bits)
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Freeman Chain Coding

• Relative coding: Coding of the change of direction instead of the direction

code = starting point + first movement + {direction changes}

0 1 2 3
4 5 6 7

→ To reduce the entropy in the chain code (may increase the number of 0)

• Properties
Translation invariant
“Rotation“ (multiples of 360/N degrees) by addition (modulo N)
”Dilatation“ by repetition
Inversion (central symmetry) by complement

• Comparison of chain codes
By measure of similarity of character strings

Editing cost or distances (substitution, destruction, insertion)
Wagner and Fisher algorithm, ...
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Freeman Chain Coding

Example

2 0 7 0 7 0 0 0 7 0 0 0 7 7 7 2 1 1 0 0 0 1 7 1
2 2 1 1 0 0 0 0 7 7 7 7 6 5 4 6 7 0 0 0 0 1 0 1

10 9 8 8 15 15 6 5 4 6 7 8 8 1 0 1

1 1 1 0 1 0 0 0 0 0 0 3 0 3 0 3 0 3 3 2 3 2 3 0 3 0 0 0 0 0 1 0 1 0    34x2=68bits, entropy=1.66
24x3=72bits, entropy=2.41
24x3=72bits, entropy=1.76
16x4=64bits, entropy=3.13

4 directions
8 directions
8 directions (relative)
16 movements
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Signature

Definition: 1D vector representing a contour in polar space (ρ,θ)

Method:

Place the center of the system on the gravity center (x̄, ȳ)

For each angle θ ∈ [−π, π], compute the distance ρ to the closest point

Properties:
Invariance to translation
Rotation by translation of angles
Only adapted to star-convex shapes
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Signature

Examples:
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Fourier Descriptors

Definition: The Fourier Transform of the shape’s contour points

The contour is seen as a periodic sequence of N points {xn, yn}

• Complex form:
cn = (xn − x̄) + j(yn − ȳ)

• Fourier Transform:

Ck = 1
N

N−1∑
n=0

cnexp−2jπk n
N k ∈ [0, ..., N − 1]

• Fourier Descriptors:

FD =
{
|C2|
|C1|

, ...,
|CN/2|
|C1|

}
Properties:

Relation between the number of coefficients and the details of approximation
The coefficients are ordered by their contributions (low→ high frequency)
Invariance to translation, rotation, and scaling
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Fourier Descriptors

Reconstruction: Shape approximation by limited number K of FT coefficients

Inverse FT: cn =
N−1∑
n=0

Ckexp2jπn k
N with n ∈ [0, ..., N − 1]

Low frequency components Ck with k ≈ 0 and k ≈ N − 1 mainly contribute

Example with N = 60:

K = 1 K = 4 K = 8 K = 60
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Example with N = 560:

K=1 K=2 K=4

K=6 K=8 K=20

21



Contour descriptors

Different methods with their advantages and limitations

• Freeman chain code
• Signature
• Fourier Descriptors

• See also Curve-based approaches:

Tangent Sequence
Curvature Scale Space

→ Complementary approach: Region descriptors
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Structure

For a discrete 2D shape S

• Bounding box: The smallest rectangle that contains the shape

Shape S Bounding box B(S) Overlap (60%)

• Convex Hull: The smallest convex polygon that contains the shape
Convex property: each line segment between two points of the polygon
remains inside the polygon

Shape S Convex hull H(S) Overlap (78%)
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Structure

• Skeleton: Center of tangential disks (inscribed) with maximal diameter
Can also be seen as “fire stopping line“

Examples:

→ The contour has an important impact on the skeleton

→ Used in physics and mechanics, medical image analysis (bronchus, eye
retina), computer graphics (animation), path finding, etc.
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Geometric

• Area and perimeter:

Area A(S) = Number of pixels in S

Perimeter P (S) = Number of contour pixels (outside) S

A(S) = 16
P (S) = 16

A(S) = 13
P (S) = 20

→ Very sensitive to sampling for small objects

• Diameter: Largest distance between two points of S
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Geometric

• Compacity/Circularity:

Isoperimetric quotient C(S) = 4πA(S)
P (S)2

C(S) = 1 C(S) = 4πs2

(4s)2 = π
4 C(S) ≈ 1

2

(
a
b

+ b
a

)
C(S) << 1

→ Invariant to rotation and scale (only in continuous domain)

• Lengthening:

L(S) = radius of the largest inscribed circle
radius of the smallest circumscribed circle
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Geometric

• Concavity: Ratio between the perimeters of the shape and its convex hull

Conc.(S) = P (S)
P (H(S))

• Rectangularity:

Ratio of the width w and height h of a rotated
minimum area bounding rectangle Rθ

Rect.(S) = maxθ
w

h
with w > h

• Eccentricity/Elongation:

Ratio of the major a and minor b axis of a
rotated minimum area bounding ellipse eθ

Ecc.(S) = maxθ
a

b
with a > b
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Moments

With f the binary image (0=background, 1=shape) of size h×w

• Space moments:

Mpq(S) = 1
hw

w∑
x=1

h∑
y=1

xpyqf(x, y) at order p + q

– Order 0: Surface
M00 = A(S)

hw

– Order 1: Gravity center {
x̄ = M10

M00

ȳ = M01
M00



Moments

• Centered moments: (translation invariant)

µpq(S) = 1
hw

w∑
x=1

h∑
y=1

(x− x̄)p(y − ȳ)qf(x, y) at order p + q

– Order 2: Inertia matrix

θ =
1
2

arctan
2µ11

µ20 − µ02
orientation

e =

√
(µ20 − µ02)2 + 4µ11

µ20 + µ02
eccentricity

• Normalized moments: (invariant to scale)

ηpq = µpq

µγ
00

with γ = p + q

2 + 1 for p + q ⩾ 2

• Hu moments: Combination of normalized moments of orders 2 and 3



Other Moments

• Other base moments:

- Legendre polynomial
- Zernike polynomial
- Angular Radial Transform (MPEG-7)

Fnm =
2π∫

θ=0

1∫
ρ=0

Vnm(ρ, θ)f(ρ, θ)ρdρdθ



Shape descriptors

Question: Possible definition of a regularity criteria for a shape?

What is a regular shape? What are its properties? How to measure them?

Regular shape? Convex? Smooth? Balanced? ?

Convexity 1.00 0.80 0.93 0.99 0.54
Smoothness 1.00 0.87 0.77 1.00 0.66

Balance 1.00 0.81 1.00 0.72 0.86
SRC 1.00 0.56 0.72 0.71 0.31

• Convexity: Overlap with the convex hull: Conv.(S) = A(S)
A(H(S))

• Smoothness: Ratio with the convex hull perimeter: 1
Conc.(S) = P (H(S))

P (S)

• Balance: Ratio of pixel position variances:
√

min(σx,σy)
max(σx,σy)

• Shape Regularity Criteria: (SRC) Multiplication of the 3 previous criteria
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Hough Transform (HT)*

Definition: Detection of lines (or other shapes) in a contour image

Motivation: Many objects are characterized by their edges

*Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and
Instrumentation, 1959 32



Contour image

Considers a binary contour image

Can be easily obtained with filter detection methods (Canny, Sobel) or more
advanced techniques including supervised and deep learning

Lines can be difficultly extracted from contour image due to:

• Partial information: missing points in a line
• Unnecessary information: contour points not belonging to a line
• The presence of noise
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Principle

Idea: Searching the information in the line parameter space (m,b)

A line in the image space corresponds to a point in the Hough space

→ Adding the lines in the Hough space for each point of the contour map.

→ The most probable lines in the image are defined by the highest values

34
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Principle

Accumulation of the lines in the Hough space

The space (m,b) needs to be discretized

Trade-off between accuracy and over-detection

35



Principle

Problem: The slope can go to the infinity when the line is vertical
(y = mx + b)

→ Polar coordinates (ρ, θ)
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Polar coordinates*

In practice, the bounded polar space (ρ,θ) is used

y = mx + b⇔ xcos(θ) + ysin(θ)

θ ∈ [0, 180]

ρ ∈ [−R, R] with R =
√

h2 + w2

*Duda et al., Use of the Hough Transformation to Detect Lines and Curves in Pictures, Comm. ACM, 1972
37



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Polar coordinates

A point in (x,y) becomes a sinusoid in (ρ,θ)

A line in (x,y) is still a point in (ρ,θ)

38



Extension to other shapes

• Hough Circle Transform (HCT):

Applications: Detection of faces, road signs, default or impacts on lenses,
aneurysms detection on angiograms, ...

Equation of a circle of center (a, b) and radius r:

(x− a)2 + (y − b)2 = r2

If r is known, the parameter space is (a,b) (same dimension as (x,y))

In this space, a circle in (x,y) is represented by a point

Method: For
each contour map pixel detected as contour point (x, y), consider each
center location a within [x− r, x + r] and accumulates in the accumu.
matrix a value at the two locations (a, y −

√
r2 − (x− a)2) and

(a, y +
√

r2 − (x− a)2) that intersect the point (x, y)

If r is not know, the parameter space becomes (a,b,r)
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Extension to other shapes

Result examples:

• Ellipses:
5-parameter space (x0, y0, a, b, θ)

• Planes in 3D point clouds: (Limberger et al., 2015)
3-parameter space (θ, ϕ, ρ)

• Generalized Hough Transform (GHT): (Ballard et al., 1981)
Generalization to any shape described by contours points
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Summary of the Hough Transform

• Fast method to detect simple shapes such as lines, circles, ellipses in
contour images

• Can be applied to any curve represented by a Cartesian or parametric
equation

• Use of polar coordinates to have a bounded parameter space
• Can be used to detect any shape with the Generalized Hough Transform

• Limitations:
• The quantization of the parameter space may cause under or over-detection
• Can give misleading results when objects happen to be aligned by chance.
• Detected lines are infinite lines described by their (m,c) values, rather than

finite lines with defined end points.
• The computational cost can be high for a large parameter space
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Practical no1

• Data: Road sign images

• Hough Circle Transform (HCT)
• Compute a contour map (skimage.feature.canny)
• Implement the HCT
• Filter the Hough map with a non-maximum suppression:

only keep maximum values in a l×l region (np.ravel, np.argmax)
• Find a way to get the inner circle surrounding the limitation number

(np.ravel, np.argsort, np.unravel_index)
• Display it on the input image (np.meshgrid)
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Pattern descriptors



1 Introduction

2 Shape descriptors

Contour descriptors

Region descriptors

Hough Transform

Practical no1

3 Pattern descriptors

Dense Feature Extraction

Keypoints/Local descriptors

Global descriptors

Block-wise descriptors

4 Dimension reduction

Curse of Dimensionality

Principal Component Analysis

Application example

Practical no2



Pattern Descriptor

What is a pattern?

Definition: Region + {Properties} (color, orientation, repetition)
An object or object region with specific properties
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Pattern Descriptor

What is a texture?

Definition: Repetitive spatial arrangement of pixels

Frequential space (Fourier Transform) well suited to exhibit texture information

→ Dirac corresponding to spatially repetitive patterns
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Pattern Descriptor

What is a texture?

But insufficient to describe complex image objects
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Descriptor Properties

What would be the desired (or not) descriptor properties?

Definition: A set of features describing (a region of) the image

A “good” descriptor should provide: “similar” values for “similar” patterns

“different” values for “different” patterns

Properties:
• Invariances to - ability to identify the object even if:

• Rotation: the object is rotated, its orientation is modified
• Translation: the object is moved to a different location
• Scale: the image/object is zoomed in or out
• Illumination: there is change in brightness and contrast in the image

• Robustness to noise, deformations, occlusions
• Need for parameter tuning
• Time to compute
• Size
• ...
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Descriptor Properties

What kind of descriptor?
Local (keypoints)

- Harris corners
- Shi-Tomasi corners
- FAST corners
- SIFT keypoints
- SURF keypoints
- ...

- SIFT
- SURF
- BRIEF
- ORB
- ... 

Global (all pixels)Dense (all pixels)

- Intensity/color
- Convolutions
- Local Binary Patterns 
  (LBP)
- Mean LBP
- Multi-Block LBP
- LBP Histogram Fourier
- ...

Block-wise (all pixels)

- Co-occurrence matrix
- Fourier transform
- Histogram of dense features
- ...

- Block-wise histograms of 
  dense features
- Histogram of Oriented 
  Gradients (HOG)
- Gradient Field HOG
- ...

Dense features Keypoint detectors Global descriptors Block-wise descriptors

Local descriptors

Dense features: Image transformations to exhibit features for each pixel

Local descriptor on Keypoints: Generally for image matching

Global descriptor: Single descriptor for the whole image (loss of spatiality)

Block-wise descriptor: Image divided into blocks to extract features → spatiality 47



Dense Feature Extraction

Definition: Each pixel is described by a set of features

• Intensities/colors of the initial image

Intensity R G B

• Color spaces by linear and non-linear transformations (YUV, YCbCr, ...)

Y Cb Cr

48



Dense Feature Extraction

• Result of convolutional filtering

Edge detection (Sobel, Canny, ...)

Intensity Sobel x Sobel y

Learned filters (Deep learning)

Filtering 1 Filtering 2 Filtering 3 Filtering 4

49



Local Binary Patterns (LBP)*

Definition: Binary code corresponding to differences with neighboring pixels

Motivation: Comparing the intensity of a pixel with the ones of its neighbors
extracts a regular pattern information in the image, i.e., a texture information.

→ Efficient descriptor for texture classification and also face recognition

→ Generates a map of the image size → histogram → classification system

Image LBP map

*Harwood et al., Texture classification a by center-symmetric auto-correlation, using Kullback discrimination
of distributions, Technical Reports, 1993

50



Neighborhood

1) Define the neighborhood:

Originally a 3x3 patch (standard 8-neighborhood) was considered

Generalization to a circularly symmetric neighborhood of radius R*

→ Each pixel gc has P neighbors {g0, g1, ..., gP −1} (ordered by convention)

→ The case P = 8, R = 1 corresponds to the standard square 8-neighborhood

→ If R > 1, the neighborhood can be computed by:
- Nearest neighbor approach: selecting the closest pixel

- Bilinear interpolation: averaging the 4 closest pixels

*Ojala et al., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,
PAMI, 2002 51



Local Binary Patterns Coding

2) Compute the LBP:

For each pixel gc having P neighbors {g0, g1, ..., gP −1}

1. Compute the intensity difference:

{g0 − gc, g1 − gc, ..., gP −1 − gc}

2. Apply the sign function

δ(x) =
{

1 if x ⩾ 0
0 otherwise

3. Weight according to binary coding

LBP(gc) =
P −1∑
p=0

2pδ(gp − gc)

→ This gives a unique code for each pattern

→ 2P different codes, P = 8: uint8 coding

Weighting

Sign

Difference

Case 

52



Local Binary Patterns Coding

Examples of patterns detected by the LBP:

Spot       Spot/flat     Line end      Edge        Corner

LBP value for each pixel:

Image LBP map
53



Extensions

The LBP method has been extended over the years:

• Improved LBP (M-LBP): (Jin et al., 2004)
Comparison of all the pixels (including the central pixel) with the mean
intensity of the neighborhood → more discriminative power

• Multi-Block LBP (MB-LBP): (Zhang et al., 2007)
Capture micro- and macro- structure information by comparing average
intensities of neighboring sub-regions (muti-scale) → more efficient

• 3D LBP: (Fehr et al., 2007)
Straightforward extension of LBP to 3D volume data

• LBP and Fourier Transform (LBP-HF): (Ahonen et al., 2009)
Combines LBP and Discrete FT → invariance to rotation

• ...



LBP Summary

• Simple coding of texure pattern with many implementation variations
• Dense feature: a descriptor is computed for each pixel
• Efficient application to texture classification and face recognition

Advantages
- Robust to illumination variations
- May be invariant to rotation and scale
- Computationally efficient → interesting for large datasets and real-time

Disadvantages
- Sensitive to noise
- May fail to capture more global texture information
- Invariant to rotation (if rotation is important to charaterize textures)
- Does not explicitly capture color information
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Keypoints

Definition: Locations of pixels containing relevant information for a targeted task

- Points with contrast variations in their neighborhood (texture)
- Corners to detect the edges of structures
- Body parts (arm, shoulder, knees) for pose estimation
- Face parts (eyebrow, lips, nose) for face recognition
- Specific fingerprint locations for identification
- ...

56



Keypoints

Generally used for image matching/registration:

→ Keypoints = discriminant image locations that can be found in another
point of view

How to detect such keypoints?

- Corner detection: Harris method

- Highly contrasted local extremum: Scale Invariant Feature Tranform (SIFT)
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Harris corner detector

Principle: Detect the image corners using vertical and horizontal gradients

How to characterize a corner?

Homogeneous region: no change in intensity
Contour: no change along the contour
Corner: significant change in at least 2 directions

Homogeneous region Contour Corner
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Harris corner detector

This information can be found in the gradients distribution

Image Ix Iy Edge Corner

Method:

1)- Compute the gradient maps Ix and Iy (Sobel, Gaussian derivates, ...)

2)- For each region l×l around a pixel (x, y), compute the covariance matrix

of the gradient values x = Ix(x, y)l and y = Iy(x, y)l

C(x, y) =
[

Cov(x, x) Cov(x, y)
Cov(y, x) Cov(y, y)

]
=

[
σ(x)2 Cov(x, y)

Cov(y, x) σ(y)2

]
→ The eigen values (λ1, λ2) give information about the variance and

correlation between x and y (cf. PCA)
59



Harris corner detector

3)- Measure the dispersion by computing
the map:

R(x, y) = det(C) − ktr(C)2

= λ1λ2 − k(λ1 + λ2)2

with k ∈ [0.04, 0.06] empirically set,
λ1, λ2 the eigen values of C

Edge

Edge
Corner

Flat
region

and      are large

→ The highest values of R correspond to the most probable corners

4)- Non-Maximum Suppression (NMS):

To avoid over-detection, only keep the maximum values in a 3×3 region

5) Corner selection:

Select the top-N values or all locations where R > threshold
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Harris corner detector

Examples: with l = 3 and corners such as R > 0.001

Image Corner detection

R R after NMS

61



Harris corner detector

Examples: with l = 3 and top-50 corners

Image Corner detection

R R after NMS
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Harris corner detector

Properties:

• Invariant to rotation
• Non-invariant to scale !

For example, a corner can become an edge when the image is scaled but the
detector is operating over the same window size.

→ Scale-invariant Feature Transform (SIFT) keypoint detector
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Scale-Invariant Feature Transform (SIFT)*

Definition: Highly contrasted local extremum keypoint detection and description
based on gradient orientations

Motivation: Provide for an image, a robust set of rotation and scale-invariant
keypoints, contrary to Harris detector, also described by a rotation and
scale-invariant descriptor

The SIFT method = SIFT keypoints (+ SIFT descriptor)

*Harwood et al., Texture classification a by center-symmetric auto-correlation, using Kullback discrimination
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SIFT Keypoints

Idea: Create a scale space with the image resized at lower scales and blurred at
different levels to detect significant corners and patterns at different resolutions

Keypoint detection method:
1) Scale space: Gaussian blurring at different scales
2) Difference of Gaussian (DoG): between images at the same scale
3) Detection of keypoints: extremum in the DoG space
4) Filtering of keypoints: edge and low-contrast
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SIFT Keypoints - 1) Scale space

- Different scales: The keypoints should be scale-invariant
The image I(h,w), is resized at different scales i: Ii

( h
i

, w
i

)

The number of scales, or octaves (music analogy), is generally set to 4

- Gaussian blur: Cancels the impact of noise
For a Gaussian filter G of variance σ: Li(x, y, σ) = G(x, y, σ) ∗ Ii(x, y)
Generally, 5 noise scales {σ0, kσ0, k2σ0, ...} with k =

√
2, σ0 = 1.6

blur scale

oc
ta

ve
s
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SIFT Keypoints - 2) Difference of Gaussians (DoG)

Differences between the blurred images at the same scale:
Di(x, y, σ) = Li(x, y, kσ) − Li(x, y, σ)

→ In Di, only remaining objects observable between the scale [σ, kσ]
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SIFT Keypoints - 3) Detection of keypoints

Keypoint selection: The extremum of the DoG with respect to their immediate
neighbors, i.e. on the set containing 26 other points defined by:

{Di(x + δx, y + δy, sσ), δx ∈ {−1, 0, 1}, δy ∈ {−1, 0, 1}, s ∈ {k−1, 1, k}}

Refinement step: To better localize extremum detected at higher scales
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SIFT Keypoints - 4) Filtering of keypoints

- Low contrast filtering to remove keypoints in non highly textured areas
Thresholding of D values

- Edge filtering similar to Harris, on the ratio r of the eigen values of the
Hessian matrix H, with a threshold rth generally set to 10:

H =

[
∂2D
∂x2

∂2D
∂y∂x

∂2D
∂x∂y

∂2D
∂y2

]
R =

tr(H)2

det(H)
=

(λ1 + λ2)2

λ1λ2
=

(r + 1)2

r
<

(rth + 1)2

rth

Detected keypoints +Low contrast filtering +Edge filtering

Final SIFT keypoints
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SIFT descriptor

How to describe the local information at the detected keypoints?

For image matching → Scale and rotation-invariant features

1) Compute the keypoint main orientation:

Histogram (36-bins) of gradient orientations in a neighborhood

Contributions weighted by a Gaussian windows depending on kσ, the scale
of the detected keypoint

Main orientation associated to the keypoint → rotation-invariance



SIFT descriptor

2) Compute the final rotation-invariant descriptor:
Aggregation into 8-bin histograms of gradient orientations in a 16x16

neighborhood divided into 4x4 cells, each one containing 4x4 pixels

Same Gaussian spatial weighting of contributions

Translation of minus main orientation → Rotation-invariance

Concatenation of 4x4=16 histograms → Descriptor of size 16x8=128

Normalization of the histogram (∥.∥2 = 1) → Illumination invariance

→ See HOG section for more details on histogram construction



Co-occurrences matrix

Definition: Occurrences of two neighboring pixels values according to an offset

Method: For an image I of size h×w

- Define a range of p values

(the unique values of the image or the possible range, e.g., [0 255])
- Define a set of pixel offsets ∆x, ∆y ([0,1], [-1,1], ...)
- For each offset, compute the co-occurrence matrix :

C∆x,∆y (i, j) =
w∑

x=1

h∑
y=1

{
1, if I(x, y) = i and I(x + ∆x, y + ∆y) = j

0, otherwise

1 2 3 4 5 6 7 8
1 1 2 0 0 1 0 0 0
2 0 0 1 0 1 0 0 0
3 0 0 0 0 1 0 0 0
4 0 0 0 0 1 0 0 0
5 1 0 0 0 0 1 2 0
6 0 0 0 0 0 0 0 1
7 2 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0

1 1 5 6 8
2 3 5 7 1
4 5 7 1 2
8 5 1 2 5

Image

Co-occurrence matrix 71



Co-occurrences matrix

Examples:

Image Co-occurrence matrix log(C1,0)
C1,0 72



Frequential space

Loss of spatiality but dense space of the image size

Image Fourier Transform (module)
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Global Histogram

Dense features averaged over the whole image, e.g., with a histogram
→ Provides a global descriptor of reduced size

Example: Global histogram on pixel intensities/colors:
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Global histogram

Histogram of the LBP map:

0 50 100 150 200 250
LBP values

0

0.5

1

1.5

2

2.5

3

3.5

4

H
(L

BP
)

10 4

Image LBP map Global histogram

→ 2P -bin histogram(s) vector(s) as descriptor → classification system

→ For RGB images, channels independently processed (3 maps/histograms)

Limitations: Loss of spatiality and potential blur of the information

75



From Global to Block-wise

→ Dense features may also be synthesized in a block-wise manner

→ Preserving some spatiality and descriptive capability of the descriptor

→ Trade-off between accuracy and size/computational cost

Example: LBP for face recognition:
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Histogram of Oriented Gradients (HOG)*

Definition: Block-wise histograms of gradient orientations

Motivation: The appearance and local shape of an object in an image can be
described by the gradient intensity distribution and the direction of the edges

→ Simplification of the representation only containing important information

→ Plots of image pixel orientations and gradients on an histogram

*Dalal and Triggs, Histograms of Oriented Gradients for Human Detection, CVPR, 2005 77



Principle

Steps to compute HOG descriptors:

1) Preprocessing: Crop or resize images (generally Xx8xYx8 pixels)

2) Compute gradient images: orientation and magnitude

3) Compute histograms of gradients: generally in 8x8 pixels cells

4) Block normalization: to normalize contrasts in blocks (generally 2x2 cells)

Visualization:

In each cell, histogram gradients are represented by orthogonal overlapping lines.

Their intensity and direction depend on the gradient magnitude and orientation.
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HOG - 1) Preprocessing

• Crop and/or resize an image to fit to a standard size

• Only necessary to compare HOG descriptors of different regions or images,
e.g., in a classification system → input features need to have the same size

• Ideally the image dimensions are multiple of the cell (4, 8, 16, ...) or block
(8, 16, 32, ...) sizes

79



HOG - 2) Compute gradient images

• Gradients obtained by convolution with filters hx = [1 0 -1] and hy = hT
x

• Magnitude of the gradient: g =
√

gx2 + gy2

Orientation of the gradient: θ = arctan( gy
gx

)
• In case of a RGB image, the gradient in the highest component is selected

R

G

BImage

Gradient

gx      gy

Magnitude
Orientation

g

Highest
gradient
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HOG - 3) Compute histograms of gradients

• The image is divided into cells, generally of size 8x8 pixels
• The orientations are considered regardless of their directions (modulo 180):

orientation

magnitude

2 3 4 4 3 4 2 2

5 11 17 13 7 9 3 4

11 21 23 27 22 17 4 6

23 99 165 135 85 32 26 2

91 155 133 136 144 152 57 28

98 196 76 38 26 60 170 51

165 60 60 27 77 85 43 136

71 13 34 23 108 27 48 110

80 36 5 10 0 64 90 73
37 9 9 179 78 27 169 166
87 136 173 39 102 163 152 176
76 13 1 168 159 22 125 143
120 70 14 150 145 144 145 143
56 86 119 98 100 101 133 113
30 65 157 75 78 165 145 124
11 170 91 4 110 17 133 110

1 180

180 1
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HOG - 3) Compute histograms of gradients

• 9-bin histogram H built for each cell (a bin corresponds to a 20o angle)
• For each θ, the closest bins are proportionnaly filled with magnitude g

• A window of 20o is considered so 2 bins H[i1] and H[i2] are filled as:

i1 = E
(

θ

20

)
H[i1] = H[i1] +

20 ∗ (i1 + 1) − θ

20
∗ g

i2 = mod(i1 + 1, 9) H[i2] = H[i2] +
θ − 20 ∗ i1

20
∗ g

orientationmagnitude

2 3 4 4 3 4 2 2

5 11 17 13 7 9 3 4

11 21 23 27 22 17 4 6

23 99 165 135 85 32 26 2

91 155 133 136 144 152 57 28

98 196 76 38 26 60 170 51

165 60 60 27 77 85 43 136

71 13 34 23 108 27 48 110

80 36 5 10 0 64 90 73

37 9 9 179 78 27 169 166

87 136 173 39 102 163 152 176

76 13 1 168 159 22 125 143

120 70 14 150 145 144 145 143

56 86 119 98 100 101 133 113

30 65 157 75 78 165 145 124

11 170 91 4 110 17 133 110

0 1 2 3 4 5 6 7 8 

H
170 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

0
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HOG - 3) Compute histograms of gradients
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orientationmagnitude
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HOG - 3) Compute histograms of gradients
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HOG - 3) Compute histograms of gradients
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HOG - 4) Block normalization

• Local gradients are sensitive to image illumination → normalization
• Cells are gathered into overlapping blocks of 2x2 cells
• In each block the 4 histograms are concatenated → 36-bin histogram Hb

• Each value of the 36-bin histogram is normalized by the norm:

Hb[i] =
Hb[i]√
36∑

i=1
Hb[i]2
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HOG - 4) Block normalization

• Local gradients are sensitive to image illumination → normalization
• Cells are gathered into overlapping blocks of 2x2 cells
• In each block the 4 histograms are concatenated → 36-bin histogram Hb

• Each value of the 36-bin histogram is normalized by the norm:

Hb[i] =
Hb[i]√
36∑

i=1
Hb[i]2

→ On this example on size 128x64 pixels:

16x8 cells (8x8 pixels)
15x7 blocks (16x16 pixels)

→ The whole image information is summarized by:

a 15x7x36=3780x1 feature vector
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HOG - 4) Block normalization

• Local gradients are sensitive to image illumination → normalization
• Cells are gathered into overlapping blocks of 2x2 cells
• In each block the 4 histograms are concatenated → 36-bin histogram Hb

• Each value of the 36-bin histogram is normalized by the norm:

Hb[i] =
Hb[i]√
36∑

i=1
Hb[i]2

Image HOG cells HOG blocks
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HOG Summary

• HOG is a feature descriptor based on gradient’s magnitude and direction

• The local information is gathered in a 9-bin histogram to describe patterns

• Block normalization can be further used to make the model more optimal
and less biased by illumination differences → 36-bin histogram.

• Are they rotation-invariant ?

• All the histograms form a HOG descriptor that can be used as feature for
a recognition or classification system (faces, cars, clothes, actions, etc).

HOG vs (Dense) SIFT

• SIFT descriptor is meant to describe keypoints (4x4 HOG in a centered
Gaussian 16x16 window) and is rotation-invariant → efficient for matching

• A dense SIFT (computed for each pixel) would be very costly while
non-robust to noise

• HOG is meant to describe patterns, and is computed on the whole image
with normalization mechanisms → should perform better for classification
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Dimension reduction



1 Introduction

2 Shape descriptors

Contour descriptors

Region descriptors

Hough Transform

Practical no1

3 Pattern descriptors

Dense Feature Extraction

Keypoints/Local descriptors

Global descriptors

Block-wise descriptors

4 Dimension reduction

Curse of Dimensionality

Principal Component Analysis

Application example

Practical no2



Curse of Dimensionality

Definition: Problems that arise when working with high-dimensional data

“As the dimensionality increases (feature sizes, classes), the number of data
points required for good performance of any machine learning algorithm
increases exponentially. ”

Example of descriptor sizes for a 128x64 pixels image:

- Block-wise LBP: (histogram size x number of cells) = 256 x 16x8 = 32768

- HOG: (histogram size x number of blocks) = 36 x 15x7 = 3780
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Curse of dimensionality

Effect on distance functions:

For any point A, lets assume distmin(A) and distmax(A) are the respective
minimum and maximum distances between A and another point.

In 1D, 2D, or 3D data space:
(distmax(A)− distmin(A))/distmin(A) > 0

But, as the number of dimensions increases:
lim

dim→∞
(distmax(A)− distmin(A))/distmin(A)→ 0

so distmax(A) ≈ distmin(A)

→ Classification algorithms based on the distance measure, including k-NN
(k-Nearest Neighbor) tend to fail when the number of dimensions is very high.

Solution: Reduce the feature space dimension by:

- Manually selecting the most useful subset of features
- Using dimension reduction methods such as PCA
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Principal Component Analysis

History: Exploratory multivariate analysis method, introduced by Hotelling in
1933 following ideas from Pearson (1901)

Application domains: Data Science, Physics, Biology, Sociology, Marketing,
Quality Control, ...

Data: set of individuals characterized by a set of quantitative variables

Objective: to summarize the initial variables using a small number of synthetic
variables (the principal components) obtained from linear combinations

Use:

• Evaluate the similarities between individuals
• Condense the representation of data while preserving as much as possible their

global organization
• Allow a visualization of the preponderant organization of data thanks to a

projection on a low-dimensional space (2D, 3D)
• Prepare other analyzes by eliminating redundant variables and the directions in

which the variance of the data is very small
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Principal Component Analysis

Example 1: Eating in the UK

Data with 17 variables... How to visualize similarity between countries?

1D projection

2D projection

Source: https://setosa.io/ev/principal-component-analysis/
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Principal Component Analysis

Example 2: Digit Images

Directly consider the image pixels as variables

Example of digit images

2D projection

Source: https://www.researchgate.net/publication/365623663_
Confidence_is_key_Using_Gaussian_Process_Classifiers_to_improve_
robustness_and_interpretability_of_CNNs
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On a 2D example

Data X, containing n samples/individuals, described by p = 2 variables

X =


xT
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xT
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xT
n
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How to find a discriminant projection base {v1, v2}?

Criteria: Maximizing the dispersion/inertia, i.e., the distance after projection

Solution: The eigen vectors of the covariance matrix
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Why the eigen vectors of the covariance matrix ?

Objective: Find the subspaces maximizing the dispersion/inertia of the points

On a line: Which line maximizes the inertia of the orthogonal projections?

• Line given by the unitary vector v
such as ∥v∥2 = vT v = 1

• Projections on line v

d(O, Pi) = xT
i v = ∥xi∥2cos(xi, v)

• Maximizing the dispersion of projections
on the line is similar to optimizing the
adjustment of the point cloud since

d(O, Pi)2 = d(O, Xi)2 − d(Xi, Pi)2

• Total inertia of the points projected on the line:
n∑

i=1

d2(O, Pi) =
n∑

i=1

(
xT

i v
)2



Why the eigen vectors of the covariance matrix ?

Objective: Maximize
n∑

i=1

(
xT

i v
)2 with vT v = 1

n∑
i=1

(
xT

i v
)2

=
n∑

i=1

(
xT

i v
)T (

xT
i v

)
=

n∑
i=1

vT
(

xixT
i

)
v = vT

[
n∑

i=1

xixT
i

]
v

= vT XT Xv

Resolution: Lagrangien multiplier method under the constraint vT v = 1

• Lagrangien: L(v) = vT XT Xv− α(vT v− 1)
• Partial derivative: ∂L

∂v (v) = 2XT Xv− 2αv
• Solving ∂L

∂v (v) = 0 to get extremas: ∂L
∂v (v) = 0⇔ XT Xv = αv

→ Standard eigen vector/value problem (α = λ)

→ vT XT Xv = λvT v = λ so λ is the highest eigen value
and v the corresponding eigen vector

• The exact same resolution gives all the other vectors of the projection base
maximizing the inertia, as the eigen vectors of XT X

• In practice, eigen vectors of the covariance matrix C = XT X
n−1



Principle

Data X, containing n samples/individuals, described by p variables

X =


x1

x2

...

xn

 =


x1,1 x1,2 ... x1,p

x2,1 x2,2 ... x2,p

... ... ... ...

xn,1 xn,2 ... xn,p



with variable average µj = 1
n

n∑
i=1

xi,j and variance σ2
j = 1

n− 1

n∑
i=1

(xi,j−µj)2

Steps to perform a PCA:

1) Data standardization: centering (µj=0), normalization (σj=1)

2) Computation of the covariance matrix C = XT X
n−1

3) Computation of a discriminant projection base (eigen vectors/values of C)

4) Data projection towards a potentially lower space (k << p)
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PCA - 1) Data standardization

• General PCA: Raw input data
- Analysis based on the natural zero of some variables

• Centered PCA: Centered variables (µj = 0)
- Easier interpretation based on the gravity center
- With variables that are directly comparable
- A high variance variable may largely impact the PCA

• Standardized PCA: Centered (µj = 0) and reduced
(σj = 1) variables
- All variables are normalized and directly comparable
- A noise variable gets the same variance as informative ones

Conclusion

→ Depends on the type of data
→ Generally easier to center the data
→ If the variables are in different units, the reduction seems necessary 94



PCA - 1) Data standardization: on a 2D example

Raw input Centered Centered and reduced

X X:,j ← X:,j − µj X:,j ← X:,j −µj

σj
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X =


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PCA - 2) Computation of the covariance matrix

Covariance: For two vectors x and y of size n of mean µx and µy

Cov(x, y) =
∑n

i=1 (xi − µx) (yi − µy)
n− 1

→ Measures the correlation between the two vectors

Interpretation:

• |Cov(x, y)| >> 0: indicates high correlation between variables
• Cov(x, y) > 0: the variables vary in the same manner (positive correlation)
• Cov(x, y) < 0: the variables vary in opposite manner (negative correlation)
• Cov(x, y) = 0: the variables are independent

Remarks:

• Cov(x, x) = σ(x)2 the variance of x
• Cov(x, y) = Cov(y, x)
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PCA - 2) Computation of the covariance matrix

Covariance matrix:

C =
[

Cov(x, x) Cov(x, y)
Cov(y, x) Cov(y, y)

]
=

[
σ(x)2 Cov(x, y)

Cov(y, x) σ(y)2

]
→ C is symmetric and summarizes the variance information

In our context:

Data Xn×p, containing n individuals, described by p variables

X =

x1,1 x1,2 ... x1,p

x2,1 x2,2 ... x2,p

... ... ... ...

xn,1 xn,2 ... xn,p


Covariance matrix Cp×p computed on all variables x:,j:

C = 1
n− 1XT X

→ If the data X has been centered (x:,j − µj), we exactly get the previous

covariance definition
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PCA - 2) Computation of the covariance matrix: on a 2D example

Raw input Centered Centered and reduced

X X:,j ← X:,j − µj X:,j ← X:,j −µj

σj

0 5 10 15 20 25
x

0

5

10

15

20

25

y

-10 -5 0 5 10

-10

-5

0

5

10

x

y

-2 -1 0 1 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

y

C =
[

281.6 181.4
181.4 126.4

]
C =

[
42.2 10.9
10.9 4.92

]
C =

[
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PCA - 3) Computation of a discriminant projection base

C being built from XT X, it is positive semidefinite.

→ It admits a matrix decomposition using eigen values and vectors such that:

C = PΛP−1 = PΛPT

where:

• P contains the eigen vectors {vi} that form an orthonormal basis
P = [v1, v2, ..., vp] with vT

i vj = 0 if i ̸= j, and ∥vi∥2 = 1

• Λ contains the eigen values {λi}

Λ = Diag({λi}) =


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...

0 0 ... λp

 with λ1 ⩾ λ2 ⩾ ... ⩾ λp ⩾ 0

and ωλi = λi∑p

j=1
λj

the weight of each eigen value/vector

→ Can be computed using eigs or svd (for singular value decompositions)
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PCA - 3) Computation of a discriminant projection base: on a 2D example

On centered data X

C =
[

42.2 10.9
10.9 4.92

]

→ eigen values and vectors

C = PΛPT

=
[
v1 v2

] [
λ1 0
0 λ2

] [
vT

1
vT

2

]
=

[
−0.97 0.26
−0.26 0.97

] [
45.16 0

0 1.98

] [
−0.97 −0.26
0.26 −0.97

]
-10 -5 0 5 10

-10

-5

0

5

10

x

y

0
00

λ1 = 45.16 v1 = [−0.97,−0.26]T ωλ1 = 0.96
λ2 = 1.98 v2 = [0.26,−0.97]T ωλ2 = 0.04
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PCA - 4) Data projection

Eigen vector matrix: P = [v1 v2 ... vk ... vp]

Projection matrix : P′ = [v1 v2 ... vk 0 ... 0]

→ To keep only the first k components, with the highest signification.

→ Each component contains information from correlated variables.

Projection to the new space:

For an individual x: x′ = P′T x

For the whole data X: X′T = P′T XT

→ For a new individual x /∈ X, possibility to directly apply the projection
(after eventual standardization), without recomputing the projection matrix P.

Reprojection to the original space:

For an individual x: x′′ = Px′ = PP′T x

For the whole data X: X′′T = PX′T = PP′T XT

101



PCA - 4) Data projection: on a 2D example

So for each individual x, using a 2 dimension projection space

x′ = P′T x =
[

vT
1

vT
2

]
x ⇔

(
x′

y′

)
=

[
−0.97 −0.26
0.26 −0.97

] (
x

y

)

-10 -5 0 5 10

-10

-5

0

5

10

x

y

0
00

→
-10 -5 0 5 10

-10

-5

0

5

10
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PCA - 4) Data projection: on a 2D example

So for each individual x, using a 1 dimension projection space

x′ = P′T x =
[

vT
1

0

]
x ⇔

(
x′

0

)
=

[
−0.97 −0.26

0 0

] (
x

y

)

-10 -5 0 5 10

-10

-5

0

5

10

x

y

0
00

→
-10 -5 0 5 10

0
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PCA - 4) Data projection: on a 2D example

Reprojection after simplification (1 dimensional space)

x′′ = PP′T x = [v1 v2]
[

vT
1

0

]
x ⇔ x′′ =

[
−0.97 0.26
−0.26 0.97

] [
−0.97 −0.26

0 0

] (
x

y

)

-10 -5 0 5 10

-10

-5

0

5

10

x

y

0
00

→
-10 -5 0 5 10 x

-10

-8
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-2
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2

4

6

8

10

y
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PCA - A practical example: Superheros

The variables:
1) Have super powers (0 or 1)
2) Wear tights (between 1 and 3)
3) Work in teams (between 1 and 10)
4) Have a specific gear (between 1 and 10)
5) Man / Woman (1 or 0)
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PCA - A practical example: Superheros

The individuals:
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A practical example: Superheros

The data:

after centering (X:,j ← X:,j − µj)
(

X:,j ← X:,j −µj

σj

)

1 2 3 4 5
(powers) (tights) (team) (gear) (man/woman)

Superman 1 3 2 2 1
Batman 0 3 7 10 1
Spiderman 1 3 2 2 1
Hulk 1 1 1 1 1
Ironman 0 1 3 10 1
Catwoman 0 3 2 3 0
X-or 0 1 2 10 1
Daredevil 0 3 2 3 1
Wonderwoman 1 2 3 9 0
Bioman 0 3 10 10 0.6
X-men 1 2 8 7 0.5
Tortues Ninja 0 1 10 7 0.8

mean 0.41 2.17 4.33 6.17 0.74
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PCA - A practical example: Superheros

The data: after centering (X:,j = X:,j − µj)

(
X:,j ← X:,j −µj

σj

)

1 2 3 4 5
(powers) (tights) (team) (gear) (man/woman)

Superman 0.58 0.83 -2.33 -4.17 0.26
Batman -0.42 0.83 2.67 3.83 0.26
Spiderman 0.58 0.83 -2.33 -4.17 0.26
Hulk 0.58 -1.17 -3.33 -5.17 0.26
Ironman -0.42 -1.17 -1.33 3.83 0.26
Catwoman -0.42 0.83 -2.33 -3.17 -0.74
X-or -0.42 -1.17 -2.33 3.83 0.26
Daredevil -0.42 0.83 -2.33 -3.17 0.26
Wonderwoman 0.58 -0.17 -1.33 2.83 -0.74
Bioman -0.42 0.83 5.67 3.83 -0.14
X-men 0.58 -0.17 3.67 0.83 -0.24
Tortues Ninja -0.42 -1.17 5.67 0.83 0.058
mean 0 0 0 0 0

variance 0.49 0.83 2.9 3.3 0.31
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PCA - A practical example: Superheros

The data: after centering (X:,j = X:,j − µj)
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PCA - A practical example: Superheros

The data: after centering and normalization
(

X:,j = X:,j −µj

σj

)
1 2 3 4 5

(powers) (tights) (team) (gear) (man/woman)
Superman 1.2 1 -0.79 -1.3 0.83
Batman -0.86 1 0.91 1.2 0.83
Spiderman 1.2 1 -0.79 -1.3 0.83
Hulk 1.2 -1.4 -1.1 -1.6 0.83
Ironman -0.86 -1.4 -0.45 1.2 0.83
Catwoman -0.86 1 -0.79 -0.96 -2.4
X-or -0.86 -1.4 -0.79 1.2 0.83
Daredevil -0.86 1 -0.79 -0.96 0.83
Wonderwoman 1.2 -0.2 -0.45 0.86 -0.2.4
Bioman -0.86 1 1.9 1.2 -0.46
X-men 1.2 -0.2 1.2 0.25 -0.78
Tortues Ninja -0.86 -1.14 1.9 0.25 0.19
mean 0 0 0 0 0
variance 1 1 1 1 1
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PCA - A practical example: Superheros

The covariance matrix:

C =


1.00 0.03 −0.29 −0.47 −0.09
0.03 1.00 0.01 −0.27 −0.17
−0.29 0.01 1.00 0.53 −0.11
−0.47 −0.27 0.53 1.00 −0.11
−0.10 −0.17 −0.11 −0.11 1.00


Eigen values and vectors: (λ1 ⩾ λ2 ⩾ ... ⩾ λ5 ⩾ 0)

λ1 = 1.91 v1 = [0.51, 0.19,−0.54,−0.64, 0.06]T ωλ1 = 0.38
λ2 = 1.20 v2 = [−0.09,−0.64,−0.25, 0.01, 0.72]T ωλ2 = 0.24
λ3 = 0.91 v3 = [0.50,−0.65,−0.04, 0.18,−0.54]T ωλ3 = 0.18
λ4 = 0.64 v4 = [0.60, 0.08, 0.69,−0.05, 0.39]T ωλ4 = 0.13
λ5 = 0.32 v5 = [0.35, 0.34,−0.41, 0.74, 0.20]T ωλ5 = 0.07
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PCA - A practical example: Superheros

Eigen vector matrix:

P =
[
v1 v2 v3 v4 v5

]
=


0.51 −0.09 0.50 0.60 0.35
0.19 −0.64 −0.65 0.08 0.34

−0.54 −0.25 −0.04 0.69 −0.41
−0.64 0.01 0.18 −0.05 0.74
0.06 0.72 −0.54 0.39 0.20


Projection matrix (p = 5→ k = 3) :

P′ =
[
v1 v2 v3 0 0

]
=


0.51 −0.09 0.50 0 0
0.19 −0.64 −0.65 0 0

−0.54 −0.25 −0.04 0 0
−0.64 0.01 0.18 0 0
0.06 0.72 −0.54 0 0


→ To keep only the first k = 3 components, with the highest signification.
→ Each component contains information from correlated variables.

Projection to the new space:

For an individual x: x′ = P′T x̄

For the whole data X: X′T = P′T X̄T
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PCA - A practical example: Superheros

Visualization:

-2 -1 0 1 2
x(v1)
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1.5

2

x(
v2

)

3D visualization (k = 3) 2D visualization (k = 2)

→ In 2D or 3D, direct visualization of the proximity between individuals.

→ For a new individual possibility to directly project in the same space.
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PCA Summary

• PCA: Principal Component Analysis
Practical tool to measure and visualize the correlation between variables
Enables to reduce the data dimension (curse of dimensionality)

• Method:
1) Data standardization: depends on the data nature
2) Covariance matrix: holds the correlation information
3) Projection base that fits the data (eigen vectors)
4) Projection into a reduced space

• Remark:
This method does not consider class information (unsupervised)
Other unsupervised data reduction approaches exist such as:

- t-SNE (van der Maaten et al. 2008)
- UMAP (McInnes et al. 2018) that can also be supervised
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Practical no2

• Data: Natural textures from [Cimpoi et al., 2014]
10 different textures
For each texture, 120 images of size 256x256

• Histogram of Oriented Gradients (HOG)
• Compute the HOG descriptor (skimage.feature.hog).

• Local Binary Pattern (LBP)
• Implement the Local Binary Pattern method for R = 1, P = 8
• Compute the global histogram (np.histogram)
• Compute block-wise histograms (np.histogram)
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Practical no2

• Supervised classification
• The train and test data are stored in 4 files: I_train.npy, Y_train.npy,

I_test.npy, Y_test.npy.
For each of the 10 classes, we have 96 train and 24 test images.

- I_train.npy contains an array of 960 images (256x256x3x960)
- Y_train.npy contains a class array of size 960x1
- I_test.npy contains an array of 240 images (256x256x3x240)
- Y_test.npy contains a class array of size 240x1

• Compute the desired features for each image to create X_train and X_test
of size 960xp and 240xp (with p the size of the descriptor)

• Evaluate the performance of the descriptor by using a supervised classifier
(SVM)

• Dimension reduction
• Apply PCA on the descriptor
• Does it help to obtain better classification?
• Measure the computation time for each case
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