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Introduction



Objectives

• Knowledge of vocabulary
Shape, pattern, descriptor, feature extraction, local, dense, keypoints,
invariance, supervised, unsupervised, etc...

• Basic principles of pattern recognition methods for image
analysis.

• Basic principles of data classification using unsupervised and
supervised methods.

• Python implementation and evaluation of some approaches for
pattern recognition.
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Organization

Pattern Descriptors

Course Shape descriptors & extraction 2h40
Practical no1 Shape recognition (Hough Transform) 4h
Course Pattern descriptors & Dimension reduction 2h40
Practical no2 Texture classification (LBP, HOG) 4h

Classification Methods

Course Unsupervised classification 1h20
Practical no1 Point cloud clustering 4h
Course Supervised classification 1h20
Practical no2 Digits classification 4h

Evaluation Practicals and tests (x0.5) + Final exam (x0.5) 1h320 (04/11)
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PR conception cycle

Outside world

Acquisition

Pre-processing

Extraction

Features/Descriptor

Model

Decision

Classification

Pre-processing

Learning data

Extraction

Learning/estimation

Features/Descriptor

Supervision
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Classifier Properties

What would be the desired (or not) classifier properties?

Objective: accurately predict the class corresponding to an input descriptor

Properties:

• Accuracy (on what evaluation metric?)
• Allowing errors
• Use/need of learning data
• Robustness to outliers (very different features compared to the dataset)
• Binary decision/class probabilities
• Fast to train/apply
• Need for parameter tuning

What do we give to the classifier?
In our context, n image data described by p features (descriptor).
Can be seen as n statistical samples (or individuals), described by p variables.
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Context

A sample of n statistical samples (or individuals), described by p variables.
Variable 1 Variable 2 ... Variable p

X1 x11 x12

X2 x21 ...
... ... ...

Xn xn1 ...

Objective
From this description, we want to classify each statistical sample into a given
category.

?
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Unsupervised / Clustering

Without example data → no learning, the classes are blind.
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Unsupervised / Clustering

Without example data → no learning, the classes are blind.

(Source: Kasun Ranga Wijeweera)
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Unsupervised / Clustering

Without example data → no learning, the classes are blind.

X1
X2

Xp

→ Allow to find structures in the data.
→ Guide the statistical studies, visualization, pre-processing, etc.

Approaches: Hierarchical grouping, K-means, etc.
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Supervised

With training data (o) available → used to classify the test data (x).

Class information called semantic.

X1
X2

Xp

poneychat

chien
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Supervised

With training data (o) available → used to classify the test data (x).

Class information called semantic.

X1
X2

Xp

poneycat

dog

→ Automatic analysis/detection/recognition of data.

Approaches: Parametrics, nearest neighbors, ... deep learning.
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Full PR system: Salmon vs Sea Bass

Context

Conveyor belt equipped with camera sensors, and we want to sort
automatically split fish categories: Salmon and Sea Bass

Problem

Describe the main recommendations/instructions to consider to set up this
system of recognition of Pisces
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Full PR system: Salmon vs Sea Bass

What are the main steps of the system?

- Capture the image
- Isolate the fish
- Take measures
- Issue a decision

What are the problems in collecting the data?

- Lighting conditions
- Position of the fish on the treadmill (direction, rotation, concealment)
- White noise (camera)

What information allows recognition?

- Length
- Thickness
- Weight
- Number and shape of fins
- Shape of the tail, the head...
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Full PR system: Salmon vs Sea Bass

Which characteristics to select?

• An expert (fishmonger) provides the following information:

“a bass is usually bigger than a salmon”

→ use of length as a feature
→ decision following a threshold (boundary)

• How to choose such a threshold?

- Calculation of a length histogram for both classes from a training set

- Search for the threshold (partitioning into two classes):
Manually (expertise)
Automatically (for instance by maximizing information, entropy, ...)
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Full PR system: Salmon vs Sea Bass

Histogram example with a selected threshold l∗

What can we deduce from this?

Although bass is larger than salmon on average, there are many samples that
are not correctly classified based on a threshold

→ Test another characteristic to better separate the classes
(e.g., the luminous intensity if generally the salmon are darker than bass)
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Full PR system: Salmon vs Sea Bass

New histogram with a selected threshold x∗

What can we deduce from this?

We see that the threshold selected for the light intensity allows to better
differentiate the two classes of fish, but that the decision is not perfect
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Full PR system: Salmon vs Sea Bass

Is it enough?

• Consider the cost of decision errors
• For example, if the objective is to fill cans, of customers may not

appreciate having a different product...

How to improve the recognition?

• Consideration of multiple characteristics (vector)

“Bars are often darker and thicker than salmon”
• Two characteristics can be used to decide:

- Lightness : x1

- Thickness : x2
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Full PR system: Salmon vs Sea Bass

Representation of samples according to thickness and lightness

A decision boundary can be obtained by drawing a straight line separating at
better the classes

What can we deduce from this?

In this example, the result is close to that obtained for only the brightness
Use a curve instead of a line
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Full PR system: Salmon vs Sea Bass

First idea
• Learning model (curve) making it possible

to obtain a zero error considering the
learning set
- Identical reality for the tests?
- Behavior of learning if open world (new
set of fish)?

Generally
• “Simple” curve or set of curves separating

at best the classes
→ Sufficiently large set of samples
representative of reality

• Other possibility: introducing a reject class
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Full PR system: Salmon vs Sea Bass

If we add other characteristics, can we still improve the recognition rate?

Potential issues?

- Correlation between characteristics
- Reliability of characteristics/measurements
- Noise (and corrections on measurements)
- Simplified space compared to reality
- Curse of Dimensionality
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Image classification

Different types of classification

Global classification: a single label per image

• Data: All image pixels
• Variables: Intensity or RGB colors?
• Class number: K = 10 (on this dataset CIFAR-10)
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Image classification

Different types of classification

Object detection: Classification + Localization of object (bounding box)

Semantic segmentation: Classification + Segmentation (class for each pixel)

Semantic
segmentation

 Object
DetectionClassification

(+background)

Global

• Data: All image pixels
• Variables: Intensity or RGB colors?
• Class number: K = N (cat, dog, duck, ...)
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Image classification

Different types of classification

Instance: Differentiation of objects of the same class

Instance
Segmentation

Object
Detection

• Data: All image pixels
• Variables: Intensity or RGB colors?
• Class number: K = N (cat, dog, duck, ...)

19



Image classification

Different types of classification

Other modalities, for example LiDAR point clouds:

• Data: All points
• Variables: 3D position (X, Y, Z) + reflectance?
• Class number: K = n (building, road, car, pedestrian, etc...)
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Image Classification

Some applications - Crop analysis

Wheat ear recognition for automatic counting:
Pixel segmentation into sub-windows (patches):

• Data: The n extracted patches
• Variables: texture descriptors computed on the patches? Measures?
• Class number: K = 2 (wheat ear, leaf or background)
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Image Classification

Some applications - Field data analysis

Recognition of plant species through hyperspectral image analysis:
Objective: To automatically classify vine pixels into grape varieties.
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Ground truth: Hyperspectral image in fake colors
cépages on the domain (144 spectral bands)

• Data: All image pixels
• Variables: reflectance ont the 144 channels ([400,950] nm) so p = 144
• Class number: K = n (the different cépages)
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Image Classification

Some applications - Material analysis

3D fiber orientations in a composite material from a 2D section:

3D structure of the material Appearance of the fibers on a 2D section
(after segmentation)

• Data: All image pixels
• Variables: geometrical shape descriptors (perimeter, surface, etc.)
• Class number: K = 3 (fibers in X, Y, or Z)
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Image Classification

Some applications - Medical image analysis

Neurological pathology classification:

3D brain MRI Structure segmentation

• Data: Structure volumes
• Variables: Average features (size, intensity, ...)
• Class number: K = N° of pathologies (Healthy, Alzheimer, Parkinson, ...)

24



Unsupervised Classification



Unsupervised classification

Sample of n statistical data, described by p variables.

Variable 1 Variable 2 ... Variable p

X1 x11 x12
X2 x21 ...
... ... ...

Xn xn1 ...
X1

X2

Xp

Search for the best partition of this sample:

• blindly (without example information),
• based on a certain criterion (a distance d).

Which criteria to use?

How to evaluate the quality of the classification according to this criteria?
25



Problem of computational complexity

• High computational complexity

Total number of partitions of a set of n individuals:

n 1 2 3 4 5 ... n ... 11 12

Pn 1 2 5 15 52 ...
n−1∑
k=0

(
n
k

)
Pk ... 678970 4213597

→ Impossible to consider all possible partitions to choose the best one.

• We choose potentially sub-optimal methods:
• Hierarchical ascending classification
• K-means method

26



Example of classification criteria

The relation intra / inter inertias

For K classes Ci, of barycenters Gi, containing ni elements

X1
X2

Xp

Class 1 Class 2

Class 3

• Barycenters:

Gi = 1
ni

∑
x∈Ci

x G = 1
K

K∑
i=1

Gi

• Total inertia:

Itot = 1
n

n∑
i=1

d(xi, G)2

• Inter classes inertia:

Iinter = 1
n

K∑
i=1

nid(Gi, G)2

• Intra classes inertia:

Iintra = 1
n

K∑
i=1

Ii with Ii =
K∑

x∈Ci

d(x, Gi)2

→ An “appropriate” partition: low intra inertia and high inter inertia.
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Hierarchical Ascending Classification (HAC)

Objective: Build a smaller set of classes through successive groupings

• Algorithm:

Start
Create a class by sample (n classes).
Repeat

Compute the distances between classes
Select the couple of classes with the minimal distance
Aggregate the two classes in one

Until there is only one class remaining.
End

• Need for:
• Distance between sample / classes
• Aggregation strategy

• Complexity: O(n3) → quite important
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Distances

For two samples x and y (vectors of size p)

• Minkowski distance
(Ln norm, general case):

dn(x, y) =

(
p∑

j=1

|xj − yj |n
)1/n

• Hamming distance
(L1 norm):

d1(x, y) =
p∑

j=1

|xj − yj |

• Euclidean distance
(L2 norm):

d2(x, y) =

√√√√ p∑
j=1

|xj − yj |2

• Maximum distance
(∞ norm):

d∞(x, y) = max
j=1...p

|xj − yj |
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Distances

For two samples x and y (vectors of size p)

• Quadratic distance: d(x, y)2 = (x − y)tM(x − y)
where M is a matrix of size p×p.

Particular cases:
• Identity matrix: M = I
• Mahalanobis distance: M = C−1

where C is the covariance matrix.

→ Projection following the eigen
vectors of C

→ Normalization over each axis
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Aggregation strategies

• Simple link or minimal jump:

D(A, B) = min
i∈A,j∈B

d(i, j)

• Complete link:

D(A, B) = max
i∈A,j∈B

d(i, j)

• Average link:

D(A, B) = d(GA, GB)

• Ward’s method:

D(A, B) = nAnB

nA + nB
d(GA, GB)

GA

G
B

Class A

Class B

(ensuring at each step that the within-class inertia is as low as possible)
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Example: wheat ear recognition by image analysis

Texture descriptors

On each image patch, we
calculate 4 statistical
attributes derived from
co-occurrence matrices.
[Har79].

Question

Do these attributes allow for
an effective differentiation of
the two classes?

n° patch energy IDM constrat entropy
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Example: wheat ear recognition by image analysis

D
is

s
im

ila
ri

té
Dendrogramme

4,36

0,13

4,36

1,46

0,33

0,06

0,33

1,46

0,310,31

0,10

67,01

3,99

0,54

0,06

0,54

0,03
0,2 0,050,01

0,006

3,99

1,12

0,07

1,12

0,180,18

12 14 11 17 18 16 15 19

2 3 5 9 7 1 8 10 4 6 3 20

D
is

si
m

ila
ri

ty

4,36

0,13

4,36

1,46

0,33

0,06

0,33

1,46

0,310,31

0,10

67,01

3,99

0,54

0,06

0,54

0,03
0,2 0,050,01

0,006

3,99

1,12

0,07

1,12

0,18

12 14 11 17 18 16 15 19

2 3 5 9 7 1 8 10 4 6 3 20

Leaves / Background Wheat ear L / B

D
is

s
im

ila
ri

té

4,36

0,13

4,36

1,46

0,33

0,06

0,33

1,46

12 14 11 17 18 16

2 classes

3 classes

4 classes

Dendrogram

33



Example: wheat ear recognition by image analysis
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The method of the moving centers, or K-means

[MacQueen1967]

• Hypothesis: the number K of classes is known.
• Principle: Find the best partition of the set of individuals into K groups:

providing the most compact and farthest groups possible from each other.

→ Minimizing intra class inertia and maximizing inter class inertia.

Good partitionBad partition
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K-means algorithm

Algorithm:

Start
Choose the centers (K points z1,...,zK in the data space).
Repeat

Segment the space into K classes C1,...,CK

(Ci is composed of the points closest from zi than the other centers zj)
Replace the zi by the barycenters Gi of classes Ci

Until minimization of the intra class inertia.
Fin

Remarks:

• The algorithm converges towards a local minimum of intra class inertia.
• If a class gets empty, we can draw a new random seed.
• Computational complexity of the algorithm...
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Lloyd’s algorithm: Example

• Choice of the class number: 3. G1 ()

+

+

+
z1

z2

z3
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Lloyd’s algorithm: Example

• Initialization of the class centers: z1, z2, and z3 (by random sampling).

+

+

+
z1
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Lloyd’s algorithm: Example

• Segmentation of the space into 3 classes. G1 ()

++

+

+
z1
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Lloyd’s algorithm: Example

• Update of the class centers: barycenters G1, G2, and G3. G1 ()

+

+

++

+

+
z1

z2

z3
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Lloyd’s algorithm: Example

• Segmentation of the space into 3 classes using G1, G2, and G3. G1 ()

+

+

++

+

+
z1

z2

z3
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Lloyd’s algorithm: Example

• Update of the class centers: barycenters G1, G2, and G3. G1 ()

+

+

+
+

+

+
z1

z2

z3
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Remarks on the K-means method

Advantages:

• Simplicity of implementation
• Unique parameter: K

• Computational complexity according to the number if iterations:
O(Niter K n (p))

38



Remarks on the K-means method

Limitations and solutions:

• Computational complexity:
→ A pre-processing limiting the number of variables (< p) can
facilitate the aggregation (ex. PCA)

• The number K of classes results from:
• A knowledge a priori,
• Successive tries,
• An automatic method (hierarchical aggregation for instance).

• Impact of the initialization (convergence towards a local minimum):
→ improved initialization (e.g. K-means++).

• Sensitivity to outlier data:
→ Robust estimation of the centers (e.g. K-medoids).
Barycenters = “central” points, i.e., points having the lowest average
distance to the other points in the same class.
Complexity O(n) → O(n2)
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K-means++ [David2007]

Optimization of the initialization:

We choose as centers spaced points among the samples X

Let D(x), the smallest distance of a point x to the already existing Gi.

Algorithm:

• 1 - Choice of the first center G1, randomly taken among the data X

• 2.1 - Computation of the D(x)
• 2.2 - Choice of a new center Gi = x ∈ X

randomly sampled following the probability law L(D) = D(x)2∑
x∈X

D(x)2

• 3 - Repeat 2.1 and 2.2 until K centers are selected
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Example of the K-means on a 2D point cloud (K = 4)
• Impact of the initialization (convergence towards a local minimum)

Risk of loosing some clusters!

→ K-means++: relevant initialization
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Example of K-means of a 2D point cloud (K = 3)
• Sensitivity to outlier data

Averaging the data can lead to irrelevant class centers!

→ K-medoids: less sensitive to outlier data
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Example of K-means of a 2D point cloud (K = 3)
• Sensitivity to outlier data

Averaging the data can lead to irrelevant class centers!

→ K-medoids: less sensitive to outlier data
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Evaluation of performance

Accurate rate (Overall Accuracy)

OA =

n∑
i=1

δC[ni],Ĉ[ni]

n
= number of accurate classification

total number

Abstract classes → need for testing all combinations
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0.5

C2 ?
C1 ?

C3 ?

43



Application example: Over-segmentation of images

Decomposition of the image into superpixels: homogeneous connected regions

→ Reduction of the number of considered elements

→ Respect of the object boundaries

Algorithm [Achanta2012]:

• Initialization of the centers as a regular grid
• Locally constrained K-means

Color and spatial distance on all pixels
• Refinement step to ensure connectivity for all clusters

... ...

44



Evaluation of performance

Comparison between a segmentation containing one or several objects and an
over-segmentation of an image containing numerous regions

image ground truth G segmentation into superpixels S

Achievable Segmentation Accuracy (ASA) metric:

ASA(S, G) = 1∑
Sk∈S

|Sk|

∑
Sk∈S

max
Gi∈G

|Sk ∩ Gi|
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Example: wheat ear recognition by image analysis

K-means result with 2 classes:

Same result as with the HAC: most of patches are well classified (except
leaves 3 and 10)

Classe Classe 1 Classe 2
Effectif 8 12

feuille 1 epi 1
feuille 2 epi 2
feuille 4 epi 3
feuille 5 epi 4
feuille 6 epi 5
feuille 7 epi 6
feuille 8 epi 7
feuille 9 epi 8

epi 9
epi 10

feuille 3
feuille 10

leaf
leaf
leaf

leaf
leaf
leaf
leaf
leaf

leaf
leaf

Number

ear
ear
ear

ear
ear
ear
ear
ear
ear
ear
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K-means vs Hierarchical Ascending Classification

With K-means:

• A data point can change its cluster between two iterations.
With hierarchical clustering, an assignment is final.

• Different initializations can lead to different solutions
One can study a set of solutions by modifying the starting centroids.

• Not easy to estimate a relevant number of clusters, nor to visualize the
proximity between clusters or objects.

→ Complementarity of the methods
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Practical no1: Unsupervised classification

• Data: 2D ans 3D point clouds to classifiy
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• Hierarchical ascending classification
• Implementation, comparison of 4 aggregation strategies

• K-means algorithm, K-means++, K-medoids
• Implementation, computation of the intra and inter classes inertias
• Over-segmentation, computation of the ASA
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Supervised Classification



The process of supervised classification

The classification of individuals into K categories is not done "blindly".

It requires a learning phase where we learn how to recognize individuals, i.e. to
associate them with one or the other of the categories.

A new individual is then "classified" into the most similar category: this is the
decision phase.

Decision rules

Class 1 Class 2 Class K

…

Learning phase

?

Class 1 Class 2 Class K

Decision phase

Classifier

New sample
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Classification: an estimation problem

The output random variable, called G

• It is the variable we seek to predict.
• It is a categorical variable.
• It takes its values into a finite set:

G ∈ G = {G1, . . . , Gk, . . . , GK}

Classification examples:

• G ∈ G = {Ear, Leaves/Background}
• G ∈ G = {X Fibers, Y Fibers, Z Fibers}
• G ∈ G = {Ground, Merlot noir, Sauvignon, ... }
• G ∈ G = {Dog, Cat, Boat, Plane, ... }
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Classification: an estimation problem

The input random variable, called X

• In the general case, it is a vector of random variables

X = (X1, . . . , Xj , . . . , Xp)t ∈ Rp

• Realization of X on the sample i:

xi = (xi1, . . . , xij , . . . , xip)t ∈ Rp, i = 1, . . . n

Reformulation of the classification problem

• Making the best possible prediction Ĝ of the output variable G from an
input sample x.
Like G, Ĝ takes its values into G:

Ĝ ∈ G = {G1, . . . , Gk, . . . , GK}
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The learning: a two steps phase

The learning:

• Analyze the characteristics of each class and determine the rules for
classification of new individuals

• Performed on the learning set (i.e. a sample of individuals whose class
membership is known a priori)

The validation:

• Applying decision rules to a new sample
• Done on the test set, i.e. individuals whose class membership is known a

priori but not use in the classification process (blind classification)
• Comparison of the classification results to prior knowledge
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Learning/Training and testing sets

The learning/training set:

• To develop the classifier (build decision rules)

EA = {(x1, g1), . . . (xna , gna )}

with xi a realization of X (individual to be classified) and gi ∈ G its class

The test/testing set (or validation):

• To test the classifier on known data that has not been used for training:

EV = {(x′
1, g′

1), . . . (x′
nv

, g′
nv

)}

with x′
i a realization of X (individual to be classified) and g′

i ∈ G its class
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To measure the performance of a classifier (on the validation set)

Confusion matrix C = [ckl]k,l∈{1,...,K}

1

11 1 1

1

l K

k kl kK

K Kl KK

c c c

c c c

c c c

predicted class

re
al

 c
la

ss

......

......

...
...

...

... ckl: number of elements of
Gk in Ĝl

Accuracy rate

OA = Trace(C)
nv

=
∑

k
ckk∑

k,l
ckl

= number of accurate classification
total number
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To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

kappa = pc − ph

1 − ph

where pc is the accuracy rate (pc = OA),
and ph is the accuracy rate due to randomness:

ph = 1
n2

v

∑
k

ck.c.k where ck. =
∑

l

ckl and c.k =
∑

l

clk

(Landis & Koch)

Quality of the 
classifier

Kappa

Excellent
Good 
Average
Low
Negligible
Bad

1,00 - 0,81
0,80 - 0,61
0,60 - 0,41
0,40 - 0,21
0,20 - 0
       < 0 55



To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

kappa = pc − ph

1 − ph

where pc is the accuracy rate (pc = OA),
and ph is the accuracy rate due to randomness:

ph = 1
n2

v

∑
k

ck.c.k where ck. =
∑

l

ckl and c.k =
∑

l

clk

Examples:
• Perfect classifier, balanced classes

cij = 0 ∀i ̸= j

cii = nv

K

ph = 1
n2

v
K

n2
v

K2 = 1
K

55



To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

kappa = pc − ph

1 − ph

where pc is the accuracy rate (pc = OA),
and ph is the accuracy rate due to randomness:

ph = 1
n2

v

∑
k

ck.c.k where ck. =
∑

l

ckl and c.k =
∑

l

clk

Examples:
• Unbalanced classes[
85 4
6 5

]
ph =

1
1002 ((85 + 4) ∗ (85 + 6) + (5 + 6) ∗ (5 + 4)) =

8198
10000

= 0.8198

kappa =
pc − ph

1 − ph
=

0.9 − 0.8198
1 − 0.8198

= 0.4451
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Bayesian Classification: The estimation problem

Cost criteria

To estimate the realization Ĝ of G, a cost criteria or function L(k, l) is
necessary:

L(k, l) is the price to pay if an observation of Gk is classified in Gl

Examples:

• Binary cost: L(k, l) =
{

0 if k = l

1 otherwise

• With different penalizations according to the risk level:

healthy  sick
healthy  

sick
0  
     0

q
p

with  p>q
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The estimation problem

Expected value of the prediction error EPE

The principle of the classifier is to minimize the EPE, defined by:

EP E = EG,X[L(G, Ĝ(X))]

By conditioning with respect to X, we get:

EP E = EXEG|X[L(G, Ĝ(X))] = EX

K∑
k=1

p(G = Gk|X = x)L(Gk, Ĝ(X))

In practice, we do not work on the set of possible X but on a particular value
x. We search to solve:

Ĝ(x) = argmin
g∈G

K∑
k=1

p(Gk|x)L(Gk, g)
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The estimation problem

Case of the binary cost (0/1)

• L(k, l) =
{

0 if k = l

1 otherwise

The principle of the classifier is to minimize the EPE, defined by:

Ĝ(x) = argmin
g∈G

∑
Gk ̸=g

p(Gk|x) = argmin
g∈G

[1 − p(g|x)]

This corresponds to:

Ĝ(x) = argmax
g∈G

p(g|x)

It is called a maximum a posteriori probability (MAP) estimate: we choose the
class g that maximizes the probability a posteriori p(g|x).
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The estimation problem

Bayes theorem

p(g|x) = f(x|g)p(g)
f(x)

with:
p(g) = p(G = g) the a priori probability of the class g

f(x) = fX(x) the probability density of the input variable X
f(x|g) = fX(x|G = g) the probability density of X in class g

The Bayesian classifier:

Ĝ(x) = argmax
g∈G

f(x|g)p(g)

In practice:
• Probabilities p(g) and laws f(x|g) are known (a priori): not realistic!
• Otherwise, they have to be estimated...
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Bayesian learning

To perform a Bayesian learning, we have to know:

• The law (type and parameters) of each class
• The a priori probabilities of each class

If they are not know, we have to estimate them.

A priori probabilities p(g)

Estimated from the learning set:

p̂(g) = #{x ∈ EA|x ∈ g}
#{x ∈ EA} = ng

nA
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Bayesian learning

Conditional law f(x|g)

Let Eg ⊂ EA be the learning individuals in the class g:

Eg = {x1, . . . , xng }

We suppose that we have a law model for f(x|g).

Let θg = {θg,1, . . . θg,m} be the parameters of this law.

Finding f(x|g), is finding θg.

Maximum Likelyhood Estimator: θ̂g = argmax
θ

f(Eg|θ)

If we consider the individuals in Eg as independent:

θ̂(g) = argmax
θ

ng∏
i=1

f(xi|θ) = argmax
θ

ng∑
i=1

logf(xi|θ)

Resolution: Solve the partial derivative system:

∀l,
∂

∂θl

ng∑
i=1

log f(xi|θ) = 0
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Linear Discriminant Analysis

Principle

The one of the Bayesian classification, under certain hypotheses...

Hypotheses

• Conditional laws: Gaussian laws of average µk...
• ... and same covariance matrix:

Vk = V, ∀k = {1, . . . , K}

The probability densities become:

f(x|gk) = 1
2π|V|1/2 e− 1

2 (x−µk)tV−1(x−µk)
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Linear Discriminant Analysis

Frontier between two classes gk and gl

Defined by:

p(gk|x) = p(gl|x) ⇔ p(gk|x)
p(gl|x) = 1

⇔ logp(gk|x)
p(gl|x) = 0

⇔ logp(x|gk)p(gk)
p(x|gl)p(gl)

= 0

⇔ logp(x|gk)
p(x|gl)

+ logp(gk)
p(gl)

= 0

⇔ logp(gk)
p(gl)

− 1
2µt

kV−1µk + 1
2µt

lV−1µl + xtV−1(µk − µl) = 0

→ Linear frontier in x

In dimension p, it is a hyperplan (dimension p − 1)
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Linear Discriminant Analysis

Discriminative functions (linear)

Defined by:

δk(x) = log (f(x|gk)p(gk))

= xtV−1µk − 1
2µ

t
kV−1µk + log p(gk), ∀k ∈ {1, . . . , K}

They define the decision rules:

Ĝ(x) = argmax
k

δk(x)

Remarks

The Gaussian hypothesis is, in practice, not very restrictive.

The ADL is simple in principle, is relatively effective for many problems, as long
as the classes remain (roughly) separable linearly.
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Linear Discriminant Analysis

Learning

The parameters of the distributions are estimated on the training set:

Probabilities a priori: p̂(gk) = nk/nA

Conditional Probabilities (estimations according to the ML):

µ̂k = 1
nk

nk∑
i=1

xi =

µk,1
...

µk,p



V̂ = 1
nA

K∑
k=1

nk∑
i=1

(xi − µ̂k)(xi − µ̂k)t = 1
nA

K∑
k=1


σ2

k,11 σ2
k,12 . . . σ2

k,1p

σ2
k,21 σ2

k,22 . . . σ2
k,2p

...
...

. . .
...

σ2
k,p1 σ2

k,p2
... σ2

k,pp


→ Equal covariance matrix assumption.
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Example 1 (with known probability laws)

Two normal laws in dimension 1

• Input variable: x ∈ R
• Two classes g1, g2 equally probable: p(g1) = p(g2) = 0.5
• Normal distributions:

f(x|gk) = 1
σk

√
2π

e
− (x−µk)2

2σ2
k
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Example 2 (with known probability laws)

Two normal laws in dimension 2

• Input variable: x ∈ R2

• Two classes g1, g2 equally probable: p(g1) = p(g2) = 0.5
• Normal distributions:

f(x|gk) = 1
2π|Vk|1/2 e− 1

2 (x−µk)tV−1
k

(x−µk)

Two samples in Bayesian decision frontier
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Quadratic Discriminant Analysis

Principle

Same as LDA, but with slighly different hypotheses...

Hypotheses

• Conditional laws: Normal (or Gaussian) distribution with mean µk...
• ... and different covariance matrices:

Vk ̸= Vl, ∀k, l = {1, . . . , K}, k ̸= l

The density probability functions are:

f(x|gk) = 1
2π|Vk|1/2 e− 1

2 (x−µk)tV−1
k

(x−µk)

Decision frontiers

They derived from quadratic equations...
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Quadratic Discriminant Analysis

Discriminative functions (quadratic too)

Defined by:

δk(x) = −1
2 log |Vk|− 1

2(x−µk)tV−1
k (x−µk)+ log p(gk), ∀k ∈ {1, . . . , K}

They define the decision rules:

Ĝ(x) = argmax
k

δk(x)

Remarks

The QDA is initially more attractive than the LDA because it can adapt to the
case of different covariance distributions.

However, it may pose estimation difficulties in the case of a small training set...
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Quadratic Discriminant Analysis

Learning

The parameters of the distributions are estimated on the training set:

Probabilities a priori: p̂(gk) = nk/nA

Conditional Probabilities (estimations according to the ML):

µ̂k = 1
nk

nk∑
i=1

xi =

µk,1
...

µk,p



V̂k = 1
nk

nk∑
i=1

(xi − µ̂k)(xi − µ̂k)t =


σ2

k,11 . . . σ2
k,1p

...
. . .

...

σ2
k,p1

... σ2
k,pp



Remarks

The number of parameters to estimate is larger than for the LDA:

(K − 1) + Kp + K

(
p(p + 1)

2

)
instead of (K − 1) + Kp + p(p + 1)

2
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Quadratic Discriminant Analysis

Learning

The parameters of the distributions are estimated on the training set:

Probabilities a priori: p̂(gk) = nk/nA

Conditional Probabilities (estimations according to the ML):

µ̂k = 1
nk

nk∑
i=1

xi =

µk,1
...

µk,p



V̂k = 1
nk

nk∑
i=1

(xi − µ̂k)(xi − µ̂k)t =


σ2

k,11 . . . σ2
k,1p

...
. . .

...

σ2
k,p1

... σ2
k,pp


Remarks

The number of parameters to estimate is larger than for the LDA:

(K − 1) + Kp + K

(
p(p + 1)

2

)
instead of (K − 1) + Kp + p(p + 1)
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Linear Discriminant Analysis on “augmented” data

Principle

Sometimes quadratic discriminant analysis is replaced by a linear analysis on
augmented data.

For example, in the case of two input variables: X = (X1, X2)t

We will apply linear discriminant analysis on:

X′ = (X1, X2, X1X2, X2
1, X2

2)t

Remarks

The results are generally quite similar to those of quadratic analysis.



“Naïve” Discriminant Analysis

Variables are considered to be independent from each other.
The covariance matrices become diagonal:

V̂k =
1

nk

nk∑
i=1


σ2

k,11 0 . . . 0
0 σ2

k,22 . . . 0
...

...
. . .

...

0 0
... σ2

k,pp

 et V̂−1
k

=


1

σ2
k,11

0 . . . 0

0 1
σ2

k,22
. . . 0

...
...

. . .
...

0 0
... 1

σ2
k,pp



→ The calculations are simpler, and this can potentially reduce the risk of
overfitting (since the dependence between features is completely ignored).
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Examples

3 2D normal laws with the same covariance matrix

Three classes in R2  Decision frontiers (computed on learning data)
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Examples

3 2D normal laws with different covariance matrices

Three classes in R2  Decision frontiers (computed on learning data)
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Examples

[Hasti2001], The Elements of Statistical Learning, Springer.

K = 3 classes, with a Gaussian Mixture Model distribution, p = 2.

LDA on LDA on QDA on
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Conclusion on the Bayesian Classification

Generative model

A prototype is created for each class

A boundary between classes can then be calculated

Different possible modeling

Using different distributions, depending on our knowledge of the problem

Normal distribution, multinomial distribution, etc.

Or more complex models (such as mixture of Gaussians)

Reference classifier

Often used as a reference classifier for its simplicity

No hyperparameters to adjust, linear time learning
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The k nearest neighbor method (k-NN)

Principle

For x a data to classify, the idea is to examine the k individuals closest to x in
the training set and to choose, for the decision, the most represented class.

Ĝ(x) = argmax
g∈G

Card{y ∈ Nk(x)|G(y) = g}

Nk(x) is the "neighborhood" of x consisting of its k closest neighbors.

Remarks

• If k = 1, the point x is simply assigned the class of its closest neighbor.
• No assumption is made about the nature of the classes or the type of

separators: it is a non-parametric method.
• There is no proper learning involved.
• The k-NN method uses the notion of neighborhood which itself implies a

notion of proximity and therefore the use of a metric.
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The k nearest neighbor method

Example

2 normal laws in 2 dimension

Bayesian decision 
frontier

1-NN 10-NN

Learning set in R2
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The k nearest neighbor method

Example

2 normal mixture laws in 2 dimension

Bayesian decision 
frontier

1-NN 10-NN

Learning set (Gaussian mixture)
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The k nearest neighbor method: other examples
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Support vector machine (SVM, Vapnik et al., 1995)

Context

Binary classifier: for each point xi, we have ti = 1 or ti = −1

Principle

We search for an optimal hyperplane of the form: y(x) = wtx + w0 = 0

Maximizing the size of the margin between two classes, that is, the region
where the boundary can be orthogonally moved without causing
misclassification.

The support vectors are the points on which the margins are based.
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Context

Binary classifier: for each point xi, we have ti = 1 or ti = −1
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Support vector machine

Projection system

.

.

x2

x1

y = 0
y < 0

y > 0

= r signed distance
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Support vector machine

The margin
The shortest signed distance between the
decision surface and the learning data.
The signed distance for a set (xi, ti) is:

tiy(xi)
∥w∥ = ti(wtxi + b)

∥w∥

Maximizing the margin implies to solve:

argmax
w,b

{
1

∥w∥min
i

[ti(wtxi + b)]
}

The margin is the same if we multiply w
and b by a constant, so we can set as
constraint:

ti(wtxi + b) = 1

for the closest point (xi, ti) of the decision
surface. → Optimal margin

margin
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Support vector machine

The margin
The shortest signed distance between the
decision surface and the learning data.
The signed distance for a set (xi, ti) is:

tiy(xi)
∥w∥ = ti(wtxi + b)

∥w∥

Maximizing the margin implies to solve:
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{
1
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i
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}
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and b by a constant, so we can set as
constraint:
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for the closest point (xi, ti) of the decision
surface. → Optimal margin
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Support vector machine

Resolution

if the learning set is linearly separable, with the previous constraint:

argmax
w,b

{
1

∥w∥min
i

[ti(wtxi + b)]
}

→ argmin
w,b

{1
2∥w∥2

}
with ti(wtxi + b) ⩾ 1 ∀i = 1, ..., n

Quadratic optimization problem. Solved using Lagrange multipliers:

L(w, b, a) = 1
2∥w∥2 −

n∑
i=1

ai

(
ti(wtxi + b) − 1

)
By cancelling the derivatives, we get:

w =
n∑

i=1

aitixi

n∑
i=1

aiti = 0

With more work and using the Karush-Kuhn-Tucker conditions, we finally get:
ai(tiy(xi) − 1) = 0 ⇒ ∀i = 1, ..., n ai = 0 or tiy(xi) = 1

→ The xi such as ai > 0 are called support vectors.



Support vector machine

Prediction using the support vectors

Only the support vectors are considered:

y(x) = wtx + b

=

(
n∑

i=1

aitixi

)t

x + b

=
n∑

i=1

aitixt
ix + b

margin



Support vector machine

Kernel trick

Implicit projection of the data into a higher dimensional space.

Addition of a kernel to compute distances: polynomial kernel, Gaussian kernel.

y(x) = wtϕ(x) + b

→ Allows to learn non-linear boundaries between classes
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Support vector machine

The non separable case

Definition of a “soft” margin that allows misclassified samples.

The classification errors ξi > 0 are such that
∑n

i=1 ξi ⩽ cste.
Now we have to solve:

min
w,b

∥w∥ + C

n∑
i=1

ξi

under the constraints:
ti(wtxi + b) ⩾ 1 − ξi ξi ⩾ 0

Resolution with the same process.
The samples with ξi > 0 are also
support vectors.

Hyperparameter C > 0

Set the trade-off between margin and errors:

- High C: high penalties, thin margin
- Low C: low penalties, large margin
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Support vector machine

Multi-classes SVM

SVM is a binary classifier.

What if the dataset contains K > 2 different classes?

Different strategies are possible:

- One-vs-all (a SVM for each class)

- One-vs-one (a SVM for each pair of classes)
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Conclusion

• The ”Ugly Duckling Theorem“ says there is no set of characteristics
better than another for all the problems (or in the absence of a priori on
the nature of the issue)

• The ”No Free Lunch Theorem“ says that in the absence of a priori
information on the problem to be treated, there is no learning algorithm
that is objectively superior to another.

→ There is simply no universally best algorithm.
It is necessary to know the problem

• And what about image dedicated classification methods?
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Bags of visual words

Classification by Bags of visual words (or bags of features)
- Approach inspired by bags of words for textual indexing
- Efficient for image-level classification

Method:
1)- Extract features on the learning
set (keypoints, regular grid, ...)
2)- Learn a vocabulary of “visual
words” on the learning set
3)- Describe each image by the
histogram of its visual words
4)- Classify the image from this
histogram, for example with SVM

State-of-the-art until 2012 (then Deep
Learning)

90



Bags of visual words

Example for texture clustering

Universal texton dictionary

histogram
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1) Extract features

Extract features for each image of the learning set:

- At Keypoints (SIFT, SURF, ...)
- On a regular grid (block-wise)

(intensity, LBP, HOG, ...)
- Random sampling ...

→ All the extracted features form the set of visual words

...

...

Regions of 
extracted features

Set of visual words
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2) Learn the visual vocabulary

Use K-means to cluster the set of visual words (described by p variables)

…

→ Each cluster center corresponds to a visual word in the vocabulary
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Clustering

…

→ Each cluster center corresponds to a visual word in the vocabulary
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2) Learn the visual vocabulary

Use K-means to cluster the set of visual words (described by p variables)

Clustering

…
Visual vocabulary

→ Each cluster center corresponds to a visual word in the vocabulary
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2) Learn the visual vocabulary

• Clustering is common for learning a visual vocabulary or codebook

- Unsupervised learning process
- Each cluster center produced by k-means becomes a codevector
- “Universal” codebook if the training set is sufficiently representative

• The codebook is used for quantizing features

- A codevector (visual word) quantizer takes a feature vector and maps
it to the index of the nearest codevector in a codebook

• How to choose vocabulary size?

- Too small: visual words not representative of all patches
- Too large: quantization artifacts, overfitting
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2) Learn the visual vocabulary

Example of vocabulary
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3) Image representation

For a new image:

- Extract features
- Build a histogram of codeword frequencies:

For each feature, increment the bin of the closest visual word

…..

fr
e
q
u
e
n
cy

codewords
31
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4) Classification

The histograms of the learning set can be fed to a classifier (e.g. SVM)

...

Face Bike Instrument

Classifier
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Practical no2: Supervised Classification - Digit Recognition

• Data: Images of digits with different fonts, rotations, scales

• Algorithms of supervised classification
• Linear discriminant and quadratic analysis

Implementation, computation of performance with the confusion matrix,
accuracy rate and Kappa coefficient

• K nearest neighbor method
Implementation, for K=1, then K=N

• Support vector machine classifier

• Choice of the parameters
• Measure of the influence of features and the size of the learning set
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