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Introduction



* Knowledge of vocabulary
Shape, pattern, descriptor, feature extraction, local, dense, keypoints,

invariance, supervised, unsupervised, etc...

® Basic principles of pattern recognition methods for image
analysis.

® Basic principles of data classification using unsupervised and
supervised methods.

® Python implementation and evaluation of some approaches for
pattern recognition.



Pattern Descriptors

Course Shape descriptors & extraction 2h40
Practical n°1 | Shape recognition (Hough Transform) 4h
Course Pattern descriptors & Dimension reduction | 2h40
Practical n°2 | Texture classification (LBP, HOG) 4h

Classification Methods

Course Unsupervised classification | 1h20
Practical n°1 | Point cloud clustering 4h
Course Supervised classification 1h20
Practical n°2 | Digits classification 4h

Evaluation Practicals and tests (x0.5) + Final exam (x0.5) 1h320 (04/11)
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Classifier Properties

What would be the desired (or not) classifier properties?
Objective: accurately predict the class corresponding to an input descriptor

Properties:

® Accuracy (on what evaluation metric?)

® Allowing errors

® Use/need of learning data

® Robustness to outliers (very different features compared to the dataset)
® Binary decision/class probabilities

® Fast to train/apply

® Need for parameter tuning

What do we give to the classifier?

In our context, n image data described by p features (descriptor).

Can be seen as n statistical samples (or individuals), described by p variables.



A sample of n statistical samples (or individuals), described by p variables.

Variable 1 | Variable 2 | ... | Variable p
X1 T11 T12
X2 T21
X5 Tnl

Objective
From this description, we want to classify each statistical sample into a given
category.
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Unsupervised / Clustering

Without example data — no learning, the classes are blind.



Unsupervised / Clustering

Without example data — no learning, the classes are blind.

Simpson's Family ~ School Employees Females Males

(Source: Kasun Ranga Wijeweera)



Unsupervised / Clustering

Without example data — no learning, the classes are blind.
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Unsupervised / Clustering

Without example data — no learning, the classes are blind.



Unsupervised / Clustering

Without example data — no learning, the classes are blind.
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— Allow to find structures in the data.

— Guide the statistical studies, visualization, pre-processing, etc.

Approaches: Hierarchical grouping, K-means, etc.



With training data (o) available — used to classify the test data (x).
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With training data (o) available — used to classify the test data (x).
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With training data (o) available — used to classify the test data (x).
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With training data (o) available — used to classify the test data (x).

Class information called semantic.
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— Automatic analysis/detection/recognition of data.

Approaches: Parametrics, nearest neighbors, ... deep learning.



Full PR system: Salmon vs Sea Bass

Context

Conveyor belt equipped with camera sensors, and we want to sort
automatically split fish categories: Salmon and Sea Bass

Problem

Describe the main recommendations/instructions to consider to set up this
system of recognition of Pisces



Full PR system: Salmon vs Sea Bass

What are the main steps of the system?

- Capture the image
- Isolate the fish
- Take measures
- Issue a decision

What are the problems in collecting the data?

- Lighting conditions
- Position of the fish on the treadmill (direction, rotation, concealment)
- White noise (camera)

What information allows recognition?

- Length

- Thickness

- Weight

- Number and shape of fins

- Shape of the tail, the head...



Full PR system: Salmon vs Sea Bass

Which characteristics to select?

® An expert (fishmonger) provides the following information:
"“a bass is usually bigger than a salmon”

— use of length as a feature

— decision following a threshold (boundary)

® How to choose such a threshold?
- Calculation of a length histogram for both classes from a training set

- Search for the threshold (partitioning into two classes):
Manually (expertise)

Automatically (for instance by maximizing information, entropy, ...)

10



Full PR system: Salmon vs Sea Bass

Histogram example with a selected threshold Ix

salmon sea bass

count

length

What can we deduce from this?

Although bass is larger than salmon on average, there are many samples that
are not correctly classified based on a threshold

— Test another characteristic to better separate the classes

(e.g., the luminous intensity if generally the salmon are darker than bass)

11



Full PR system: Salmon vs Sea Bass

New histogram with a selected threshold xx*
count

14 salnon sea bass
12

10

What can we deduce from this?

We see that the threshold selected for the light intensity allows to better
differentiate the two classes of fish, but that the decision is not perfect

12



Full PR system: Salmon vs Sea Bass

Is it enough?

® Consider the cost of decision errors

® For example, if the objective is to fill cans, of customers may not
appreciate having a different product...

How to improve the recognition?

® Consideration of multiple characteristics (vector)
“Bars are often darker and thicker than salmon”
® Two characteristics can be used to decide:

- Lightness : z1

- Thickness : x>

13



Full PR system: Salmon vs Sea Bass

Representation of samples according to thickness and lightness
width
224 salmon

sea bass
21 " ° .
20 « e

19 ..
18
17 .o
16 .
15

14 1i;

A decision boundary can be obtained by drawing a straight line separating at
better the classes

What can we deduce from this?

In this example, the result is close to that obtained for only the brightness

Use a curve instead of a line

14



Full PR system: Salmon vs Sea Bass

First idea i
® Learning model (curve) making it possible Z -__mmon sgabass
to obtain a zero error considering the 0f  .c
learning set e, .'
- ldentical reality for the tests? ji .
- Behavior of learning if open world (new o
set of fish)? o i

2 4 é 8 10

Generally

® “Simple"” curve or set of curves separating
at best the classes
— Sufficiently large set of samples
representative of reality

® Other possibility: introducing a reject class lightmess
2 4 6 8 10

15



Full PR system: Salmon vs Sea Bass

If we add other characteristics, can we still improve the recognition rate?

Potential issues?

- Correlation between characteristics

- Reliability of characteristics/measurements
- Noise (and corrections on measurements)
- Simplified space compared to reality

- Curse of Dimensionality

16



Image classification

Different types of classification

Global classification: a single label per image

airplane 5 ¥V . = &-
automobile = Eﬁh . °
B b
ABEE - P
deer aal '&ﬁ Vg’ !
oy e rolab
frog EPDANE
horse n-n m
=l e
truck 1 ygi

® Data: All image pixels
® Variables: Intensity or RGB colors?
® Class number: K = 10 (on this dataset CIFAR-10)

17



Image classification

Different types of classification

Object detection: Classification 4+ Localization of object (bounding box)
Semantic segmentation: Classification 4+ Segmentation (class for each pixel)

Global Object Semantic
Classification Detection segmentation

CAT CAT CAT (+background)
~ _

Single object

® Data: All image pixels
® Variables: Intensity or RGB colors?

® Class number: K = N (cat, dog, duck, ...)
18



Image classification

Different types of classification

Instance: Differentiation of objects of the same class

Object Instance
Detection Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK
A /)

Y
Multiple objects

® Data: All image pixels
® Variables: Intensity or RGB colors?
® Class number: K = N (cat, dog, duck, ...)

19



Image classification

Different types of classification

Other modalities, for example LiDAR point clouds:

® Data: All points
® Variables: 3D position (X, Y, Z) + reflectance?

® Class number: K = n (building, road, car, pedestrian, etc...)
20



Image Classification

Some applications - Crop analysis

Wheat ear recognition for automatic counting:
Pixel segmentation into sub-windows (patches):

® Data: The n extracted patches
® Variables: texture descriptors computed on the patches? Measures?

® Class number: K = 2 (wheat ear, leaf or background)

21



Image Classification

Some applications - Field data analysis

Recognition of plant species through hyperspectral image analysis:
Objective: To automatically classify vine pixels into grape varieties.

Ground truth: Hyperspectral image in fake colors
cépages on the domain (144 spectral bands)

® Data: All image pixels
® Variables: reflectance ont the 144 channels ([400,950] nm) so p = 144
® Class number: K = n (the different cépages)

22



Image Classification

3D fiber orientations in a composite material from a 2D section:

3D structure of the material Appearance of the fibers on a 2D section
(after segmentation)

® Data: All image pixels
® Variables: geometrical shape descriptors (perimeter, surface, etc.)
® Class number: K = 3 (fibers in X, Y, or Z)

23



Image Classification

Neurological pathology classification:

3D brain MRI Structure segmentation

® Data: Structure volumes
® Variables: Average features (size, intensity, ...)

® Class number: K = N° of pathologies (Healthy, Alzheimer, Parkinson, ...)

24



Unsupervised Classification



Unsupervised classification

Sample of n statistical data, described by p variables.

Variable 1 Variable 2 Variable p
X T11 T12
Xo T21
Xn Tn1

Search for the best partition of this sample:

® blindly (without example information),

® based on a certain criterion (a distance d).

Which criteria to use?

How to evaluate the quality of the classification according to this criteria?

25



Problem of computational complexity

® High computational complexity

Total number of partitions of a set of n individuals:

n 1 2 3 4 5 . n 11 12
—

P, 1 2 5 15 52 .. (Z)Pk .. 678970 4213597

=0

—

=

— Impossible to consider all possible partitions to choose the best one.

® We choose potentially sub-optimal methods:

® Hierarchical ascending classification

® K-means method

26



Example of classification criteria

The relation intra / inter inertias

For K classes C;, of barycenters G;, containing n; elements

x X ® Total inertia:
x G, %X
m? 1 n
X Class 2
x Itot = — E d(X“G)
n
xuG i=1
x X . .
x Gs ® |nter classes inertia:
X
Xx X
Class 3 Tinter = E n:d(Gy, G
® Barycenters: ® Intra classes inertia:

K K
:nii ZX G:;;GZ L’ntra:%Z]i with I; = Zd(vai)Q
- i=1

xeC; xEC;

— An “appropriate” partition: low intra inertia and high inter inertia.

27



Hierarchical Ascending Classification (HAC)

Objective: Build a smaller set of classes through successive groupings

® Algorithm:

Start
Create a class by sample (n classes).
Repeat
Compute the distances between classes
Select the couple of classes with the minimal distance
Aggregate the two classes in one
Until there is only one class remaining.
End

® Need for:
® Distance between sample / classes
® Aggregation strategy

28



Hierarchical Ascending Classification (HAC)

Objective: Build a smaller set of classes through successive groupings

® Algorithm:

Start
Create a class by sample (n classes).
Repeat
Compute the distances between classes
Select the couple of classes with the minimal distance
Aggregate the two classes in one
Until there is only one class remaining.
End

® Need for:
® Distance between sample / classes
® Aggregation strategy

e Complexity: O(n®) — quite important

28



For two samples x and y (vectors of size p)

® Minkowski distance ® Euclidean distance

(Ln norm, general case): (L2 norm):

P 1/n
dn(x, = =yl
(x,y) (; lzj — vl ) da(x,y) =

® Hamming distance
(L1 norm):

® Maximum distance
(00 norm):
P

di(x,y) =Y |o; =yl doo (x,y) = max |z; —yj]

j=1

29



For two samples x and y (vectors of size p)

® Quadratic distance: d(x,y)?> = (x — y)'M(x — y)

where M is a matrix of size pxp.

Particular cases:

® |dentity matrix: M =1
® Mahalanobis distance: M = C—1 ]
where C is the covariance matrix.

— Projection following the eigen
vectors of C

— Normalization over each axis

Xy

30



Aggregation strategies

® Simple link or minimal jump:

D(A,B) = ieTij"eBd(i’j)

® Complete link:
D(A,B) = max_d(i,j)

i€cA,jeB

® Average link:

D(A7 B) = d(GA7 GB)
Class B

® Ward’s method:

D(A,B) =

(ensuring at each step that the within-class inertia is as low as possible)

31



Example: wheat ear recognition by image analysis

Texture descriptors

On each image patch, we
calculate 4 statistical
attributes derived from
co-occurrence matrices.
[Har79].

Question

Do these attributes allow for
an effective differentiation of
the two classes?

n° patch | energy | IDM | constrat | entropy
1 0.01 0.34 .53 501
2 0.01 032 1085 516
3 0.01 0.38 1060 498
4 0.01 039 6.04 455
5 002 035 961 471
6 0.02 0.43 7.10 448
7 0.01 033 8.02 489
8 001 035 836 491
9 0.01 0.38 8.92 484
10 0.01 0.38 7.04 5.13
11 0.07 073 151 320
12 0.19 0.81 0.52 223
13 0.03 0.56 5.86 429
14 0.22 0.84 0.34 197
15 0.1 074 1.06 285
16 0.16 0.82 0.44 241
17 0.09 0.75 0.99 2.0
18 0.10 067 3.02 322
19 0.13 078 0.56 2.55
20 0.08 058 6.46 3.89

32



Example: wheat ear recognition by image analysis

Dendrogram
67,01
2 classes
2
‘= 4,36
.‘__s 3,99
E 3 classes
‘®
(] ‘ 1 classes
() 1,46 112
3—‘— 0,54
0,3 0.3].0 o 02 005 Y_Lo,ls
0,13 , — 0,01 '
0,06 0,06 00 1001 0,07
N < - ~ @ © wn (<] o~ o™ n (=] ~ il © o < © ™ o
- - -~ - — - - - — - N
Leaves | Background L/IB
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Example: wheat ear recognition by image analysis

Leaves /| Background

34



The method of the moving centers, or K-means

[MacQueen1967]

® Hypothesis: the number K of classes is known.

® Principle: Find the best partition of the set of individuals into K groups:
providing the most compact and farthest groups possible from each other.

— Minimizing intra class inertia and maximizing inter class inertia.

Bad partition Good partition

P

35



K-means algorithm

Algorithm:

Start
Choose the centers (K points z1,...,zx in the data space).
Repeat
Segment the space into K classes C1,...,Ck
(C; is composed of the points closest from z; than the other centers z;)
Replace the z; by the barycenters G; of classes C;
Until minimization of the intra class inertia.
Fin

Remarks:

® The algorithm converges towards a local minimum of intra class inertia.
® |f a class gets empty, we can draw a new random seed.

® Computational complexity of the algorithm...

36



Lloyd’s algorithm: Example

e Choice of the class number: 3.

37



Lloyd’s algorithm: Example

e Initialization of the class centers: z1, z>, and z3 (by random sampling).

Y
- K
Z9 .
+ o 2 o ©®
Y
®
®eo o
o o
+ 74 ® 9
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Lloyd’s algorithm: Example

e Segmentation of the space into 3 classes.

o

” o 0

+1 Zo ..

+ [ )
..
o
®eo o
o O

+z3 ® 9
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Lloyd’s algorithm: Example

e Update of the class centers: barycenters G, G2, and Gs.

°
°
o+.‘.
°® G
G2+.
®eo o
I )
G;+..
0o ©
o o
®

37



Lloyd’s algorithm: Example

e Segmentation of the space into 3 classes using G, G2, and G3.

o
®_ 0
o+® o
.. G].
G+ @
o O
o o
G
;+..
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Lloyd’s algorithm: Example

e Update of the class centers: barycenters G, G2, and Gs.

. .®
o @
o '®
o ©
Gz...
% o
o 0
G, ® @

37



Remarks on the K-means method

Advantages:
® Simplicity of implementation
® Unique parameter: K

® Computational complexity according to the number if iterations:
O(]Viter K n (p))

38



Remarks on the K-means method

Limitations and solutions:

® Computational complexity:
— A pre-processing limiting the number of variables (< p) can

facilitate the aggregation (ex. PCA)

® The number K of classes results from:

® A knowledge a priori,
® Successive tries,
® An automatic method (hierarchical aggregation for instance).

® Impact of the initialization (convergence towards a local minimum):
— improved initialization (e.g. K-means++).

® Sensitivity to outlier data:
— Robust estimation of the centers (e.g. K-medoids).
Barycenters = "central” points, i.e., points having the lowest average
distance to the other points in the same class.
Complexity O(n) — O(n?)

39



K-means++ [David2007]

Optimization of the initialization:

We choose as centers spaced points among the samples X

Let D(z), the smallest distance of a point « to the already existing Gi.

Algorithm:

® 1 - Choice of the first center G1, randomly taken among the data X
® 2.1 - Computation of the D(x)

® 2.2 - Choice of a new center G; =z € X
D(z)?

D 2
zeX @)

randomly sampled following the probability law £(D) = T

® 3 - Repeat 2.1 and 2.2 until K centers are selected

40



Example of the K-means on a 2D point cloud (K = 4)

05

0.5

05

-0.5

® Impact of the initialization (convergence towards a local

Iter : 1 - Score : 0.383

Iter : 2 - Score : 0.458

minimum)

Iter: 3 - Score : 0.533

1 1 1
05 05 e 4 05
W
* K
e o of LEM. T 0
O i
O 05 0.5 05
1 1 1
05 0 05 - 05 0 05 B 05 0 05 - 05 0 05 1
Iter : 4 - Score : 0.625 Iter : 5 - Score : 0.654 Iter : 6 - Score : 0.679 True clustering
1 1 1
” * 05 05 05
L
e g%! A o} 0 0
* e .
%
05+ 05 05
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Example of the K-means on a 2D point cloud (K = 4)

05

0.5

05

-0.5

® Impact of the initialization (convergence towards a local

Iter : 1 - Score : 0.667

Iter : 2 - Score : 0.808

minimum)

Iter: 3 - Score : 0.938

1t 1 1
05 05 & % 05
@
* e
o 0 ;%4 o 0
iy * i, .
& 7
05" 0.5 0.5
1 1 1
05 0 05 B 05 0 05 B 05 0 05 B 05 0 05 1
Iter : 4 - Score : 0.950 Iter : 5 - Score : 0.946 Iter : 6 - Score : 0.946 True clustering
1 1 1
05 05 05
o 0 0
05+ 05 05
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Example of the K-means on a 2D point cloud (K = 4)

® Impact of the initialization (convergence towards a local minimum)

Risk of loosing some clusters!

Iter : 1 - Score : 0.504 Iter : 2 - Score : 0.596 Iter : 3 - Score : 0.700
1 1 1 1
0.5 0.5 0.5 0.5
O
0 5 o 0 0
5 O
-0.5 -0.5¢ -0.5 -0.5
1 1 1 1
1 0.5 0 0.5 1 1 0.5 o 0.5 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1
Iter : 4 - Score : 0.746 Iter : 5 - Score : 0.750 Iter : 6 - Score : 0.750 True clustering
1 1 1 1
0.5 0.5 0.5 0.5
0 [ 0 0
-0.5 -0.5¢ -0.5 -0.5
1 1 1 1
1 0.5 0 0.5 1 1 0.5 o 0.5 1 -1 0.5 0 0.5 1 1 0.5 0 0.5 1
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Example of the K-means on a 2D point cloud (K = 4)

® Impact of the initialization (convergence towards a local minimum)
Risk of loosing some clusters!

— K-means++: relevant initialization

Iter : 1 - Score : 0.879 Iter : 2 - Score : 0.963 Iter: 3 - Score : 0.958
1 1 1 1
0.5 @ 0.5 0.5 > * 05 x W
*km‘ *x%}%
e
O N A 1 f@ ¥ e
0 o 0 *‘}%‘f* wE] 0 *y}%p‘ Ly
ES E
0.5 051 05 05
1 1 1 1
1 05 0 05 1 1 05 [ 05 1 1 0.5 [ 05 1 1 05 ) 05 1
Iter : 4 - Score : 0.954 Iter : 5 - Score : 0.954 Iter : 6 - Score : 0.954 True clustering
1 1 1 1
05 05 05 05
0 ot 0 0
0.5 i 0.5+ 0.5 i 0.5
1 1 1 1
1 05 0 05 1 1 05 0 05 1 1 0.5 0 05 1 1 0.5 0 05 1
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Example of K-means of a 2D point cloud (K = 3)

05

0.5

05

-0.5

® Sensitivity to outlier data

Averaging the data can lead to irrelevant class centers!

Iter : 1 - Score : 0.928

Iter : 2 - Score : 0.908

Iter : 3 - Score : 0.887

o+ kg e
1- 1 1
O 05 0.5 05
@ 0 0 0
-0.5¢ -0.5 -0.5
-1 -1 -1
0.5 0 0.5 1 ! 0.5 o 0.5 <! -0.5 0 0.5 > 0.5 0 0.5 1
Iter : 4 - Score : 0.846 Iter : 5 - Score : 0.800 Iter : 6 - Score : 0.749 True clustering
* * *® *
1 1 N 1
0.5 0.5 0.5
[ 0 0
057 -0.5 -0.5

0.5 0 05
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Example of K-means of a 2D point cloud (K = 3)

® Sensitivity to outlier data
Averaging the data can lead to irrelevant class centers!

— K-medoids: less sensitive to outlier data

Iter : 1 - Score : 0.928 Iter : 2 - Score : 0.964 Iter : 3 - Score : 0.964
o+ kg e
1 1 1 1
05 e} 05 05 05 P
0 @ 0 0 0
0.5 05+ . 0.5 ' 0.5
1 1 1 1
1 0.5 0 05 1 1 05 0 05 1 1 05 0 05 1 1 05 o0 05 1
Iter : 4 - Score : 0.964 Iter : 5 - Score : 0.964 Iter : 6 - Score : 0.964 True clustering
- > " *
1 1 1 1
05 05 05 05
.
0 o 0 o
0.5 051 0.5 05 N
1 1 1 1
1 05 0 05 1 1 05 0 05 1 1 05 0 05 1 1 05 0 05 1
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Evaluation of performance

Accurate rate (Overall Accuracy)

number of accurate classification

n total number

0.5

C 7 .y
0.4 1 - * k

* ¥
0.3 ok ¥ M He
0.2 * Wy
*

0.1 ¥ *
0 * o T
01 *
E + ¥ ¢
02 6’ e ( ‘., )
-0.3 o -

-0.4
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
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Application example: Over-segmentation of images

Decomposition of the image into superpixels: homogeneous connected regions
— Reduction of the number of considered elements

— Respect of the object boundaries

Algorithm [Achanta2012]:

® |nitialization of the centers as a regular grid

® | ocally constrained K-means
Color and spatial distance on all pixels

® Refinement step to ensure connectivity for all clusters

| [TTITT] [T T
| ]
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Evaluation of performance

Comparison between a segmentation containing one or several objects and an
over-segmentation of an image containing numerous regions

ground truth G segmentation into superpixels S

Achievable Segmentation Accuracy (ASA) metric:

> |Sk]

SKES

ASAS.G) = - 3 max|S. N Gl
SLES i<
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Example: wheat ear recognition by image analysis

K-means result with 2 classes:

Same result as with the HAC: most of patches are well classified (except
leaves 3 and 10)

Class Class 1 Class 2
Number 8 12
leaf 1 earl

leaf 2 ear2

leaf 4 ear3

leaf 5 eard

leaf 6 ear5

leaf 7 ear 6

leaf 8 ear7

leaf 9 ear8

ear9

ear10

leaf 3

leaf 10

46



K-means vs Hierarchical Ascending Classification

With K-means:

® A data point can change its cluster between two iterations.
With hierarchical clustering, an assignment is final.

® Different initializations can lead to different solutions
One can study a set of solutions by modifying the starting centroids.

® Not easy to estimate a relevant number of clusters, nor to visualize the
proximity between clusters or objects.

— Complementarity of the methods

47



Practical n°1: Unsupervised classification

® Data: 2D ans 3D point clouds to classifiy

cloud_data_1.mat

® Hierarchical ascending classification

® Implementation, comparison of 4 aggregation strategies

® K-means algorithm, K-means++, K-medoids
® |mplementation, computation of the intra and inter classes inertias

® Qver-segmentation, computation of the ASA

48



Supervised Classification



The process of supervised classification

The classification of individuals into K categories is not done "blindly".

It requires a learning phase where we learn how to recognize individuals, i.e. to
associate them with one or the other of the categories.

A new individual is then "classified" into the most similar category: this is the
decision phase.

Class 1

Class 2 Class K New sample x ?

’ x X \\ rl X X X \\ rl X \ \l,

I 1 ] ' “ee ] X ' .pe

d x g X J oy X ! — i Classifier
N X / X X X/ N x ’

Class1  Class 2 Class K

Learning phase Decision phase
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Classification: an estimation problem

The output random variable, called G

® |t is the variable we seek to predict.
® |t is a categorical variable.

® |t takes its values into a finite set:

Geg:{g17"'7gk,~"7gK}

Classification examples:

® G € G = {Ear, Leaves/Background}

G € G = {X Fibers, Y Fibers, Z Fibers}

G € G = {Ground, Merlot noir, Sauvignon, ... }
® G € G = {Dog, Cat, Boat, Plane, ... }

50



Classification: an estimation problem

The input random variable, called X
® In the general case, it is a vector of random variables
X=(X1,...,X;,...,X,) €R?

® Realization of X on the sample i:

t » .
x¢:(a:¢1,...,mij,...,x¢p) € R”, i=1,...n

Reformulation of the classification problem

® Making the best possible prediction G of the output variable G from an
input sample x.
Like G, G takes its values into G:

Geg:{g17~~~7gk7--'agK}

51



The learning: a two steps phase

The learning:
® Analyze the characteristics of each class and determine the rules for
classification of new individuals

® Performed on the learning set (i.e. a sample of individuals whose class
membership is known a priori)

The validation:

® Applying decision rules to a new sample

® Done on the test set, i.e. individuals whose class membership is known a
priori but not use in the classification process (blind classification)

® Comparison of the classification results to prior knowledge
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Learning/Training and testing sets

The learning/training set:
® To develop the classifier (build decision rules)

Ea= {(legl)v tee (X’ﬂaagna)}

with x; a realization of X (individual to be classified) and g; € G its class

The test/testing set (or validation):

® To test the classifier on known data that has not been used for training:

Ey = {(Xll?gi)v cee (X;.ng;v)}

with x} a realization of X (individual to be classified) and g; € G its class
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To measure the performance of a classifier (on the validation set)

Confusion matrix C = [cri]k,ieq1,..., K}

( Clp oo €y wee O
. .. ckr: number of elements of
.‘ * gk in él
‘ Cu Cu Cik
Cx1 Cxa Cxk
Accuracy rate
_ Trace(C) D xCkk  number of accurate classification

OA = =
Ty Zk,l Crl total number
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To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

kappa = Pe —Pr
1—pn

where p. is the accuracy rate (p. = OA),
and py, is the accuracy rate due to randomness:

1
Ph = —5 g Ck.Cx  Wwhere ck = g ¢k and cx = g Cik
n
k l

v
l

(Landis & Koch)

Quality of the

classifier Kappa
Excellent 1,00-0,81
Good 0,80-0,61
Average 0,60-0,41
Low 0,40-0,21
Negligible 0,20-0

Bad <0
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To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

Pe — Pn

kappa =
1—pn

where p. is the accuracy rate (p. = OA),
and py, is the accuracy rate due to randomness:

1
Ph=—5 E ck.cx Where cx = E cey  and cx = E Clk
n

v
k 1 l

Examples:

® Perfect classifier, balanced classes

o 1 . 1
cij =0 Vi#j ph:FK%:?
v

Ny
Cii = —=
K
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To measure the performance of a classifier (on the validation set)

Kappa Coefficient

Measures the efficiency of the classifier following randomness:

Pe — Pn

kappa =
1—pn

where p. is the accuracy rate (p. = OA),
and py, is the accuracy rate due to randomness:

1
Ph=—5 E ck.cx Where cx = E cey  and cx = E Clk
n

v
k 1 l

Examples:
® Unbalanced classes

8198

{865 451] ph = 1002 ((85+4) * (85 +6) + (5+6) x (5+4)) = 1 = 0.8198

pe—pn 0.9 —0.8198

= = 0.4451
1—pn 1-0.8198

kappa =
55



Bayesian Classification: The estimation problem

Cost criteria

To estimate the realization G of G, a cost criteria or function L(k,1) is
necessary:

L(k,1) is the price to pay if an observation of Gy, is classified in G

Examples:

0 if k=1

® Binary cost: L(k,l) = { ) therwi
otherwise

® With different penalizations according to the risk level:
healthy sick

healthy | 0 q with p>q
sick |P O
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The estimation problem

Expected value of the prediction error EPE

The principle of the classifier is to minimize the EPE, defined by:

EPE = Eg x[L(G,G(X))]

By conditioning with respect to X, we get:

EPE = ExEgx[L(G,G(X))] = Ex Y _p(G = G[X = x) L(Gx, G(X))
k=1

In practice, we do not work on the set of possible X but on a particular value

x. We search to solve:

G(x) = argmin > p(Gx[x)L(Gr. 9)

9€9 4
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The estimation problem

Case of the binary cost (0/1)

0 if k=1
® L(kI) =
(k. ) { 1 otherwise

The principle of the classifier is to minimize the EPE, defined by:

G(x) = argmin Z p(Gr|x) = argmin [1 — p(g|x)]
g€g Gretg g€eg

This corresponds to:

G(x) = argmax p(g|x)
geg

It is called a maximum a posteriori probability (MAP) estimate: we choose the
class g that maximizes the probability a posteriori p(g|x).
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The estimation problem

Bayes theorem

plglx) = LXI9P(9)

f(x)
with:
p(g) = p(G = g) the a priori probability of the class g
f(x) = fx(x) the probability density of the input variable X

f(x|g) = fx(x|G =g) the probability density of X in class g

The Bayesian classifier:

G(x) = T f(x|g)p(9)

In practice:

® Probabilities p(g) and laws f(x|g) are known (a priori): not realistic!

® Otherwise, they have to be estimated...
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Bayesian learning

To perform a Bayesian learning, we have to know:

® The law (type and parameters) of each class

® The a priori probabilities of each class

If they are not know, we have to estimate them.

A priori probabilities p(g)
Estimated from the learning set:

(o) — TAXE Balxeg}h  ng
p(g)_ #{XEEA} - na
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Bayesian learning

Conditional law f(z|g)

Let E; C E4 be the learning individuals in the class g:
Ey ={xi,...,xn,}

We suppose that we have a law model for f(x|g).

Let Oy = {04.,1,...04,m} be the parameters of this law.

Finding f(x|g), is finding 0.

Maximum Likelyhood Estimator: 8, = arggnax f(Eq|0)

If we consider the individuals in E; as independent:
g g
6 = argmax x;|0) = argmax log f(x;|0
() = argn gﬂn gn ;gf(\)

Resolution: Solve the partial derivative system:
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Linear Discriminant Analysis

Principle

The one of the Bayesian classification, under certain hypotheses...

Hypotheses

® Conditional laws: Gaussian laws of average p...

® .. and same covariance matrix:
Vi, =V, vk={1,...,K}

The probability densities become:

L lem) VT )
f(xlgr) = 2m[V]172¢ 2
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Linear Discriminant Analysis

Frontier between two classes g, and g;

Defined by:
plgkl) = plax) & 2 _
p(gi]x)
p(gx|x)
< lo =0
& plorlx)
& logPXl9R)P(ar) _
p(x|g1)p(gr)
o logPXl9R) o Plor)
p(x|g1) p(g1)
1 o 1 e _
< gM — VA s Vi VT (e — ) = 0
plg) 2 2

— Linear frontier in x

In dimension p, it is a hyperplan (dimension p — 1)
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Linear Discriminant Analysis

Discriminative functions (linear)

Defined by:

3k (x) = log (f(xIgr)p(gk))
_ 1 _
= x'V7 e = ZpiV T o+ logp(gr), VR € (1., K}

They define the decision rules:

G(x) = argmax 0 (x)
k

Remarks
The Gaussian hypothesis is, in practice, not very restrictive.

The ADL is simple in principle, is relatively effective for many problems, as long
as the classes remain (roughly) separable linearly.
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Linear Discriminant Analysis

Learning
The parameters of the distributions are estimated on the training set:
Probabilities a priori: p(gr) = ni/na

Conditional Probabilities (estimations according to the ML):

ng Hk,1
N 1 .
M = — E X =
Nk
i=1
Hk,p
2 2 2
Ok11 Okga2 -+ Okip
K K 2 2 2
"k Okgp21 Ogp22 -+ Ogop
& 1 . N 1
V=— § (xi — fur) (xi — fur)” = E
na na
k=1 i=1 k=1
2 2 : 2
Ok,pl  Ok,p2 : Ok,pp

— Equal covariance matrix assumption. -



Example 1 (with known probability laws)

Two normal laws in dimension 1

® |nput variable: z € R
® Two classes g1, g2 equally probable: p(g1) = p(g2) = 0.5

® Normal distributions:

1 _(x*MQk)z
20
€T = —¢ k
f(x|gr) G

(44,00 =@1D
(,uz’o-z) = (4> 2)
p(g)=p(g,)=05

Bayesian decision frontier S A
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Example 2 (with known probability laws)

Two normal laws in dimension 2

® Input variable: x € R?
® Two classes g1, g2 equally probable: p(g1) = p(g2) = 0.5

® Normal distributions:

1

_ =3 (x—p) Vi (x— )
f(x|gr) = QTF\Vkll/?e 2 k

5.
4 ¢ 4
3 H1 = (713 1)_ 3
: it g‘ . p2 = (1,-1)7"
0 o DO 0

0 0088 % 2 000 Vv, 10
a 00@ §d% 1=V2=14 1]
. b %%’ 2
3 ° 5 °° ° 3
“ -4
5 4 3 2 1 0 1 2 4 5 4,
Two samples in R? Bayesian decision frontier
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Quadratic Discriminant Analysis

Principle

Same as LDA, but with slighly different hypotheses...

Hypotheses

® Conditional laws: Normal (or Gaussian) distribution with mean py...

® .. and different covariance matrices:

Vie#Vy, VkI={1,...,K}k#I
The density probability functions are:

__ 1 — L)'V ()
f(x|gr) = VA2 ¢ 2 &

Decision frontiers

They derived from quadratic equations...
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Quadratic Discriminant Analysis

Discriminative functions (quadratic too)

Defined by:

1 _
(x—pr)' Vi (x—pi)+logp(gr), Veke{l,...,K}

1
9 (x) = =5 log|Vi| =5

They define the decision rules:

G(x) = argmax 0 (x)
k

Remarks

The QDA is initially more attractive than the LDA because it can adapt to the

case of different covariance distributions.

However, it may pose estimation difficulties in the case of a small training set...
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Quadratic Discriminant Analysis

Learning
The parameters of the distributions are estimated on the training set:
Probabilities a priori: p(gr) = ni/na

Conditional Probabilities (estimations according to the ML):

N Hk,1
. 1
MR = — E X =
Nk
i=1
Hk,p
2 2
Uk,ll e Uk,lp
1 &
Vi=— (xs — o) (xs — far)" =
23
i=1

2 .
Ok,p1 : Ok,pp
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Quadratic Discriminant Analysis

Learning
The parameters of the distributions are estimated on the training set:
Probabilities a priori: p(gr) = ni/na

Conditional Probabilities (estimations according to the ML):

N Hk,1
N 1 .
MR = — E X =
Nk
i=1
Hk,p
2 2
Uk,ll e Uk,lp
1 &
Vie=— ) (xi— fu)(xi — fu)" =
Nk
i=1

2 : 2
Ok,p1 : Ok,pp
Remarks

The number of parameters to estimate is larger than for the LDA:

1 1
(K-1)+Kp+ K <p(p2+)> instead of (K —1)+ Kp+ % .



Linear Discriminant Analysis on “augmented” data

Sometimes quadratic discriminant analysis is replaced by a linear analysis on
augmented data.

For example, in the case of two input variables: X = (X1, X2)*

We will apply linear discriminant analysis on:

X' = (X1,Xs, X1 X, X3, X3)"

The results are generally quite similar to those of quadratic analysis.



“Naive” Discriminant Analysis

Variables are considered to be independent from each other.

The covariance matrices become diagonal:

1
0 0
2
013,11 0 0 Uk(,)ll L .
2
N 1 & 0 k22 0 N k.22
Vi =— et VI: = .
ng :
i=1
2 1
0 0 Thpp 0 0 2
PP

— The calculations are simpler, and this can potentially reduce the risk of
overfitting (since the dependence between features is completely ignored).
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Examples

3 2D normal laws with the same covariance matrix

5.
. ‘
s 5
: ; 2
! ER “: itfj;“;“ !
0 s g -‘gf;f# 0
: S, £ % .

o, Sfbgo o® Y
. Ny S 2
, *95\,@“%., )
. : r
o

5

RN
Three classes in R? Decision frontiers (computed on learning data)
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Examples

3 2D normal laws with different covariance matrices

A
&'

‘ON_D
.
&
s &
o
;
Qo @
o
3
.
%?

R S Y

.
% 4 8 2 4 0 1 2 8 4 5 & a3 2 a0 123 s s a2

Three classes in R? Decision frontiers (computed on learning data)
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[Hasti2001], The Elements of Statistical Learning, Springer.

K = 3 classes, with a Gaussian Mixture Model distribution, p = 2.

LDA on LDA on QDA on
X=(X, Xz)l XI:(XI X, XX, X’ Xzz)l X =(X, Xz)l
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Conclusion on the Bayesian Classification

Generative model
A prototype is created for each class

A boundary between classes can then be calculated

Different possible modeling
Using different distributions, depending on our knowledge of the problem
Normal distribution, multinomial distribution, etc.

Or more complex models (such as mixture of Gaussians)

Reference classifier
Often used as a reference classifier for its simplicity

No hyperparameters to adjust, linear time learning
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The k nearest neighbor method (%-NN)

Principle

For x a data to classify, the idea is to examine the k individuals closest to x in
the training set and to choose, for the decision, the most represented class.

G‘(x) = argéncax Card{y € Nx(x)|G(y) = g}

Ni(x) is the "neighborhood" of x consisting of its k closest neighbors.

Remarks

® If k =1, the point x is simply assigned the class of its closest neighbor.

® No assumption is made about the nature of the classes or the type of
separators: it is a non-parametric method.

® There is no proper learning involved.

® The k-NN method uses the notion of neighborhood which itself implies a
notion of proximity and therefore the use of a metric.
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The £ nearest neighbor method

Example

2 normal laws in 2 dimension

Learning set in R?

:
Bayesian decisio
frontier :
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The £ nearest neighbor method

Example

2 normal mixture laws in 2 dimension

Learning set (Gaussian mixture)
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Support vector machine (SVM, Vapnik et al., 1995)

Context

Binary classifier: for each point z;, we have t; =1 or t; = —1

Principle
We search for an optimal hyperplane of the form: y(x) = wi'x 4+ wo = 0

Maximizing the size of the margin between two classes, that is, the region
where the boundary can be orthogonally moved without causing
misclassification.
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Support vector machine (SVM, Vapnik et al., 1995)

Context

Binary classifier: for each point z;, we have t; =1 or t; = —1

Principle
We search for an optimal hyperplane of the form: y(x) = wi'x 4+ wo = 0

Maximizing the size of the margin between two classes, that is, the region
where the boundary can be orthogonally moved without causing
misclassification.

The support vectors are the points on which the margins are based.

y=-1 A
.. Gi(t=1)
[
1 ®
()
e @
@ y>0
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Support vector machine

y>0 X2
y=0 8.
y <0 : y(x) = wix + wy
Cs
X
/
W /
RARIE
/ [[w
X \/>
X1
wo
X=X+ Wl

w|



Support vector machine

y>0 X2
y=0 8.
y <0 |l y(x) = wix + wy
Co
X
/
/ty(x) . :
ST ~——signed distance

g

X=X+ Ty



Support vector machine

The shortest signed distance between the
decision surface and the learning data.

The signed distance for a set (x;,t;) is:
tiy(xs) ti(w'x; + b)

Wil liwl

Maximizing the margin implies to solve:

argmax{ Wl mm[f (w'x; + b)}}

w,b




Support vector machine

The shortest signed distance between the
decision surface and the learning data.
The signed distance for a set (x;,t;) is:
tiy(xi)  t; (w'x; +b)
Iwi - [lwll

Maximizing the margin implies to solve:

argmax{ Wl mm[f (w'x; + b)]}

w,b

The margin is the same if we multiply w
and b by a constant, so we can set as
constraint:

f,-,(w’x,' +b) =1

for the closest point (x;,t;) of the decision
surface.



Support vector machine

The shortest signed distance between the

decision surface and the learning data.

The signed distance for a set (x;,t;) is:
tiy(xi)  t; (w'x; +b)

[[wl [wl
Maximizing the margin implies to solve: y=0 y=1
y=-1 ~
argmax{ mm[f (w'x; + b)]} e Q @
SR RT] o X o
@
The margin is the same if we multiply w @ ° i e ®
and b by a constant, so we can set as ® O y>0
constraint: e . /
f,',(W/X,‘ + b) -1 y<0 . margin

for the closest point (x;,t;) of the decision
surface. — Optimal margin



Support vector machine

if the learning set is linearly separable, with the previous constraint:

Vl l 2
argmax{m‘in[tl(wtxﬁrbﬂ} — argmin{EHWH‘}

w,b HWH ¢
with  ti(wix; +b)>1 Vi=1,...,n

Quadratic optimization problem. Solved using Lagrange multipliers:
n

w|® - Zaz (tz(wfxi +b) — 'l)

1=1

L(w,b,a) = é

By cancelling the derivatives, we get:
n

W = iamxi Zam =0

i=1 i=1
With more work and using the Karush-Kuhn-Tucker conditions, we finally get:

ai(tiyx;))—1)=0 = Vi=1l,..,n a =0 or tiy(x)=1

— The x; such as a; > 0 are called support vectors.



Support vector machine

Only the support vectors are considered:

y(x) =w'x+b

n

= a;tiX; x+b
>

1=1

n

= Z al[,lX;x +b

1=1




Support vector machine

Kernel trick
Implicit projection of the data into a higher dimensional space.

Addition of a kernel to compute distances: polynomial kernel, Gaussian kernel.

y(x) = w'(x) + b

Decision surface

— Allows to learn non-linear boundaries between classes
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Support vector machine

The non separable case
Definition of a “soft” margin that allows misclassified samples.

The classification errors &; > 0 are such that Z:zl & < cste.

Now we have to solve:

n J—
, y=0 y=1

minw| +C > & y=—1
i=1 N

_ )

under the constraints: ® \

t
ti(wx; +b)>1-& & =0 ®
o
Resolution with the same process. ®
The samples with &; > 0 are also ®
support vectors. ®
y <0

Hyperparameter C' > 0
Set the trade-off between margin and errors:
- High C: high penalties, thin margin

- Low C: low penalties, large margin .



Support vector machine

Multi-classes SVM
SVM is a binary classifier.

What if the dataset contains K > 2 different classes?

Different strategies are possible:
- One-vs-all (a SVM for each class)

- One-vs-one (a SVM for each pair of classes)

... o o
° ) ° e
...o oy _ . lee® ©0 ®
® o ® o
®
®e 0o
@ o0 o
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Conclusion

® The "Ugly Duckling Theorem" says there is no set of characteristics
better than another for all the problems (or in the absence of a priori on
the nature of the issue)

® The "No Free Lunch Theorem" says that in the absence of a priori
information on the problem to be treated, there is no learning algorithm
that is objectively superior to another.
— There is simply no universally best algorithm.

It is necessary to know the problem

® And what about image dedicated classification methods?
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Bags of visual words

Classification by Bags of visual words (or bags of features)
- Approach inspired by bags of words for textual indexing

- Efficient for image-level classification

Method:
1)- Extract features on the learning
set (keypoints, regular grid, ...)

2)- Learn a vocabulary of “visual
words” on the learning set

3)- Describe each image by the

histogram of its visual words

4)- Classify the image from this
histogram, for example with SVM

State-of-the-art until 2012 (then Deep
Learning)
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Bags of visual words

Example for texture clustering

91



1) Extract features

Extract features for each image of the learning set:

- At Keypoints (SIFT, SURF, ...)

- On a regular grid (block-wise)
(intensity, LBP, HOG, ...)

- Random sampling ...

— All the extracted features form the set of visual words

_w v ‘
Regions of ?14&_ ﬁ 7 E- e
extracted features Y — 31\- * ‘

. Y
Set of visual words l L r
N L8
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2) Learn the visual vocabulary

Use K-means to cluster the set of visual words (described by p variables)

I

[

Ioruraasan Y
11

— Each cluster center corresponds to a visual word in the vocabulary
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2) Learn the visual vocabulary

Use K-means to cluster the set of visual words (described by p variables)

° [ ]
e _o
...
°
oo
° °
L)
LJ Clustering
o0

— Each cluster center corresponds to a visual word in the vocabulary
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2) Learn the visual vocabulary

Use K-means to cluster the set of visual words (described by p variables)

EEEEE

— Each cluster center corresponds to a visual word in the vocabulary
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2) Learn the visual vocabulary

® Clustering is common for learning a visual vocabulary or codebook

- Unsupervised learning process
- Each cluster center produced by k-means becomes a codevector

- “Universal” codebook if the training set is sufficiently representative

® The codebook is used for quantizing features
- A codevector (visual word) quantizer takes a feature vector and maps
it to the index of the nearest codevector in a codebook
® How to choose vocabulary size?

- Too small: visual words not representative of all patches

- Too large: quantization artifacts, overfitting
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2) Learn the visual vocabulary

Example of vocabulary

O s P ™ ™ e e ™
e NAFEL T .- .

a THauPun] IWE I
o idl BR™ . ™. =Ny
" I=NATEP ACs L
Lim=d_& S=Cu-M
PL"ALS Eiu= B
ARIIE I8 FEZIE "
=Ei = (REIIZWul B,
EE_Cmi=aiis ==
| sMF==I0 Uil 0
] TER LR ] |
WAHIRET s
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3) Image representation

For a new image:

- Extract features
- Build a histogram of codeword frequencies:
For each feature, increment the bin of the closest visual word

§ alsessssun | |

frequency

I

PLONENRLS B

codewords
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4) Classification

The histograms of the learning set can be fed to a classifier (e.g. SVM)

H H cos
i} > o0 =

0 R
JTh @ = TL @ = T L @ =

~ =~

Face Bike Instrument

v

Classifier
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Practical n°2: Supervised Classification - Digit Recognition

® Data: Images of digits with different fonts, rotations, scales

PRV NN

® Algorithms of supervised classification

® Linear discriminant and quadratic analysis
Implementation, computation of performance with the confusion matrix,
accuracy rate and Kappa coefficient

® K nearest neighbor method
Implementation, for K=1, then K=N

® Support vector machine classifier

® Choice of the parameters

® Measure of the influence of features and the size of the learning set
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