
 1

Rémi Giraud
remi.giraud@enseirb-matmeca.fr
https://remi-giraud.enseirb-matmeca.fr/

Enseignement intégré
TSIG1 | Systèmes Électroniques Embarqués 2A | 2025-2026

Introduction au traitement d’images

Chapitre 3 : Couleur

mailto:remi.giraud@enseirb-matmeca.fr
https://remi-giraud.enseirb-matmeca.fr/

 2

Plan du cours

● Introduction

● Formation / Acquisition

● Image numérique
 - Format/Affichage/Synthèse
 - Espaces couleur caractéristiques : compression, esquisse, illusion

● Traitements
 - Filtrage linéaire / non linéaire : débruitage, anonymisation
 - Détection de contours : réhaussement de contraste

● Transformée de Fourier
 - Application : recouvrement fréquentiel

● Compression d’images
 - Application : algorithme JPEG

● Transformation spatiales

 3

Image numérique

● Un signal 2D discret … avec quelques spécificités
─ Certains concepts se généralisent depuis le cas 1D
─ D’autres non … notamment liés à la visualisation et la perception

● Image synthétique : créée artificiellement (simulation, calcul, ...)
● Image naturelle : discrétisation du monde réel (photo, relevé, ...)

Qu’est-ce qu’une image numérique ? (1/2)

 4

Image numérique

● Un signal 2D discret = une matrice spatialement cohérente

● Comment visualiser efficacement un tel contenu ?
 → Par une information couleur continue 2D (comme nos yeux)

Qu’est-ce qu’une image numérique ? (2/2)

Plots indépendants
des multiples lignes

(intensité = hauteur)

Surface colorée
(intensité = hauteur + teinte)

Surface colorée
(intensité = teinte)

Vue du dessus

 5

Image numérique

R=212
G=16
B=40

R=201
G=26
B=43

R=192
G=101
B=106

R=255
G=250
B=250

R=250
G=248
B=251

R=205
G=65
B=112

R=197
G=69
B=94

R=138
G=59
B=80

R=230
G=192
B=213

R=255
G=248
B=255

R=103
G=120
B=176

R=154
G=106
B=148

R=127
G=96
B=137

R=140
G=118
B=156

R=255
G=246
B=255

R=62
G=127
B=193

R=98
G=117
B=186

R=97
G=129
B=188

R=73
G=97
B=145

R=182
G=176
B=210

212

201

192

255

250

205

197

138

230

255

103

154

127

140

255

62

98

97

73

182

16

26

101

250

248

65

69

59

192

248

120

106

96

118

246

127

117

129

97

176

40

43

106

250

251

112

94

80

213

255

176

148

137

156

255

193

186

188

145

210

R

V

B
Intensité vectorielle





Qu’est-ce qu’une couleur ?

● 3 composantes/canaux
- Rouge (R), Vert (V), Bleu (B)

 6

Image numérique

* * *

= 

R G B Image couleur

* * *

 

● Trois canaux d’intensité associés à une couleur primaire :

Comment afficher une image couleur ?

● Principe de la synthèse additive :

 7

Image numérique

* * *

= 

R G B Image couleur

* * *

 

● Trois canaux d’intensité associés à une couleur primaire :

Comment afficher une image couleur ?

● L’ensemble des couleurs peut être
représenté par un cube (RGB)

 8

Image numérique

● En niveaux de gris : Triplication du seul canal L

Comment afficher une image couleur ?

=  

L L L Image en
« niveaux de gris »

* * ** * *

● Pas de contraste de couleur :
image perçue en nuances de gris

 9

Image numérique

● En niveaux de gris : Triplication du seul canal L

Comment afficher une image couleur ?

=  

L L L Image en
« niveaux de gris »

* * ** * *

● Note : pour passer facilement d’une image couleur à une image à
un seul canal qu’on peut afficher en « niveaux de gris », on peut
calculer la luminance L : (R+V+B)/3

 10

Image numérique

● Pas de vraies couleurs ! Donc on a le choix.
● Affichage en fausses couleurs ou couleurs indéxées :

Avec une palette (table de correspondance couleur)

Comment afficher une image avec un seul canal ?

60

59

72

88

103

75

64

73

105

91

77

131

62

98

167

188

191

208

62

90

170

202

205

209

55

66

120

184

203

207

51

54

74

150

190

202

Intensité scalaire Palette
(« niveaux de gris »)



0

255

0

255

Intensité scalaire Palette
(« jet »)



 11

Lecture et affichage

Palette couleur

0

255

0

255

{200, 200, 200}
 R G B

{ 90, 90, 90}
 R G B

{255, 120, 0}
 R G B

{ 2, 232, 242}
 R G B

● Une palette, c’est un ensemble de triplés RGB qui associe chaque
intensité à une couleur :

...

 12

Image numérique

● Un signal 2D discret = une matrice spatialement cohérente avec :
- Une taille/résolution : h x w (x c)
- Un nombre de canaux c :

1 = image 2D, choix de la palette couleur
3 = image couleur, couleurs fixes RGB

● Chaque élément de cette matrice I est un pixel, associé à :
- Une couleur ou intensité I(i,j) (format usuel [0, 255])

Qu’est-ce qu’une image numérique ? (3/3)

0

255

 13

En Python

Conventions

● Accès à une image RGB = Accès à un tableau tridimensionnel

x=0
y=0
c=2

x=1
y=0
c=2

x=2
y=0
c=2

x=3
y=0
c=2

x=4
y=0
c=2

x=1
y=2
c=1

x=2
y=2
c=1

x=3
y=2
c=1

x=4
y=2
c=1

x=4
y=1
c=2

x=1
y=3
c=1

x=2
y=3
c=1

x=3
y=3
c=1

x=4
y=3
c=1

x=4
y=2
c=2

x=1
y=4
c=1

x=2
y=4
c=1

x=3
y=4
c=1

x=4
y=4
c=1

x=4
y=3
c=2

x=0
y=0
c=1

x=1
y=0
c=1

x=2
y=0
c=1

x=3
y=0
c=1

x=4
y=0
c=1

x=1
y=2
c=1

x=2
y=2
c=1

x=3
y=2
c=1

x=4
y=2
c=1

x=4
y=1
c=1

x=1
y=3
c=1

x=2
y=3
c=1

x=3
y=3
c=1

x=4
y=3
c=1

x=4
y=2
c=1

x=1
y=4
c=1

x=2
y=4
c=1

x=3
y=4
c=1

x=4
y=4
c=1

x=4
y=3
c=1

x=0
y=0
c=0

x=1
y=0
c=0

x=2
y=0
c=0

x=3
y=0
c=0

x=4
y=0
c=0

x=0
y=1
c=0

x=1
y=1
c=0

x=2
y=1
c=0

x=3
y=1
c=0

x=4
y=1
c=0

x=0
y=2
c=0

x=1
y=2
c=0

x=2
y=2
c=0

x=3
y=2
c=0

x=4
y=2
c=0

x=0
y=3
c=0

x=1
y=3
c=0

x=2
y=3
c=0

x=3
y=3
c=0

x=4
y=3
c=0

x

y

img[ligne,colonne,canal]
=

img[y,x,canal]

img[x,y,canal]

c

 14

Environnement de développement

1. 1
4

Dossier courant (créer et se placer
dans un dossier spécifique au cours)

Variables déclarées
(prendre l’habitude de vérifier

leur taille)

Exécuter le script

Script

Console : Sortie d’affichage standard
Permet également de taper des commandes

Interface de Spyder

 15

Lecture et affichage

largeur

« vraies » couleurs
hauteur

https://remi-giraud.enseirb-matmeca.fr/teaching/Dataset d’images :

Image en « vraies couleurs »

import matplotlib.pyplot as plt
img = plt.imread('../img/bdx.jpg')
whos (dans la console)

 Variable Type Data/Info

 img ndarray 383x510x3: 585990 elems, type `uint8`, 585990 bytes

plt.figure(1)
plt.imshow(img)
plt.show()

 16

Lecture et affichage

Image en « fausses couleurs »

img = plt.imread('./img/cameraman.tif')
plt.figure(1)
plt.imshow(img)
plt.show()

Et dans l’explorateur de fichiers, l’image ressemble à cela ?

 17

Lecture et affichage

Autres palettes :

R, G, B

0
1

2
3

5

6

7Palette couleur 255

from matplotlib import cm
map = cm.gray(range(256))

[[0. 0. 0. 1.]
 [0.00392157 0.00392157 0.00392157 1.]
 [0.00784314 0.00784314 0.00784314 1.]
 ...
 [0.99215686 0.99215686 0.99215686 1.]
 [0.99607843 0.99607843 0.99607843 1.]
 [1. 1. 1. 1.]]

Canal alpha
(transparence)

 18

Lecture et affichage

Image en « fausses couleurs »
img = plt.imread('../img/cameraman.tif')
plt.figure(1)
plt.imshow(img, cmap=’’gray’’)
plt.figure(2)
plt.imshow(img, cmap=’’hot’’)

#En récupérant explicitement la colormap
from matplotlib import cm
from matplotlib.colors import ListedColormap
map = cm.hot(range(256))
plt.figure(3)
plt.imshow(img, cmap=ListedColormap(map))

 19

h, w, c = img.shape

 Bilan des caractéristiques de l’image
─ Dimensions spatiales
─ Codage : « vraies couleurs »

 couleurs indexées
─ Format numérique
─ Intervalles d’intensité
─ Répartition des intensités

 Identification du moyen d’affichage
─ Pour les images couleurs : pas trop le choix...
─ Pour les images à 1 seul canal : Déterminer le contexte

● Informationnel
● De comparaison/fidélité

 → Choix : palette, ratio L/H, intervalles d’intensité, etc.

Lecture et affichage

Comment extraire les informations d’une image ?

whos (dans la console)

[np.min(I(:)) np.max(I(:))]

np.histogram(I)

 20

Lecture et affichage

Contexte « informationnel » (couleurs indéxées)

Ajustement automatique de la palette (min,max) (plt.imshow(I))

Ajustement contrôlé (plt.imshow(I, vmin=X, vmax=X))

 22

Auto

Contrôlé

Lecture et affichage

Contexte de comparaison/fidélité
Ajustement contrôlé (plt.imshow(I, vmin=X, vmax=X))

 23

Outils de visualisation

Data cursor
Pour visualiser rapidement les intensités
dans une région

Colorbar
Pour visualiser la gamme des intensités
d’une image à 1 canal (plt.colorbar())

 24

Mémo Python (1/2)

 Bonnes pratiques :

 Utiliser un vrai éditeur de code Python
 (spyder, jupyter-notebook, etc.)

 Se placer dans un dossier dédié
 Toujours écrire dans un script (fichier.py)
 Surveiller le workspace pour voir quelles sont et

surtout la taille des variables
 Consulter l’aide des fonctions (help(function))

● Modules :
● Accéder aux fonctions d’autres modules :

import numpy as np #toutes les fonctions,
possibilité de renommer le module

from signal import convolve
#import d’une seule fonction

import subfolder.my_module
 #import de ./subfolder/my_module.py

● Fonctions :
● Peuvent être écrites dans le script (avant le code

appelant, comme en C)





 Exécution (spyder) :

 Principales différences avec Matlab :
● Indices [], à partir de 0 : tableau de taille l

tab[0] #premier élément
tab[l-1] = tab[-1] #dernier élément

● Vecteur d’échantillonnage :
range(0,100) #0, 1, ... , 99

● Opération terme à terme par défaut :
a = np.array([1,2,3,4])
a*a #array([1,4,9,16])







- Tout le script : F5 ou <Run>

- Par section : ctrl+enter ou <Run section>

 h, w, c = img.shape

#%% Affichage
plt.figure(), plt.imshow(img)

#%% Vectorisation
img_vect = img(:)

- Par sélection : F9

h, w, c = img.shape

#Affichage
plt.figure(), plt.imshow(img)

def min_max(T):
 min_ = min(T)
 max_ = max(T)
 return min_, max_

 25

Mémo Python (2/2)

 Commandes de bases :
#Modules utiles
import numpy as np #tableau, opérateurs maths
import matplotlib.pyplot as plt #image, affichage
import skimage #par ex. espace couleur ycbcr
from scipy.signal import convolve2d #convolution

#Manipulation d’image
img = plt.imread('path/img.png') #chargement
h, w, c = img.shape #image couleur
print(h)

img_vect = img.ravel() #Vectorisation
G = img[:,:,1] #accès dimension 2e canal = vert

#Mise à zéro
img = np.zeros((h,w,c)) #ones() existe aussi
img = np.copy(img*0)

#Sous-échantillonnage
img_se = img[1:h:4, 1:w:4] #ou img[::4,::4]

#Création d’un vecteur/d’une matrice
mat = [[1,1],[2,2],[3,3]] #liste de taille 3x2
mat = np.array(mat) #np.array

#Produits vecteurs/matriciels
vect = np.array(np.matrix(range(1,11,2))).T

#range(début,fin,pas) #T = transposée
vect_5_1 = vect*vect #terme à terme
vect_5_5 = np.dot(vect, vect.T) #prod. matriciel
vect_1_1 = np.dot(vect.T, vect) #prod. matriciel

#Somme sur matrice nD
sum_G = np.sum(G**2) #somme de tous les termes^2
sum_G = np.mean(img, axis=2) #conversion niv. gris

#Seuillage sur une matrice
mask = G > 100 #mask = carte binaire (hxw)
#Équivalent à faire :
mask = np.zeros((h,w))
for i in range(0,h):
 for j in range(0,w):
 if (G[i,j]>100):

 mask[i,j] = 1

G[mask==0] = 0 #Mise à zéro des pixels de G où mask=0
G = G*mask #Équivalent à multiplication terme à terme

#changement de type
G = G.astype('uint8') #ou G = np.uint8(G)

#changement d’espace couleur
img_ycbcr = skimage.color.rgb2ycbcr(img)

#convolution image couleur (même filtrage sur R,G,B)
filter_ = np.ones([7,7,1])/49
img_f = convolve2d(img, filter_, mode='same')

#Affichage
img_L = np.mean(img, axis=2)
plt.figure()
plt.subplot(121) #Affichage multiples 1x2
plt.plt(img_L[0,:])
plt.title('Profil de la première ligne de L')
plt.subplot(122)
plt.plot(img[0,:,0],'ro') #superposition par défaut
plt.plot(img[0,:,1],'g+')
plt.plot(img[0,:,2], color=[0,0,1])
plt.title('Profil RGB de la première ligne')
plt.xlabel('x'), plt.ylabel('Intensité')
plt.show()

Autres fonctions utiles : np.squeeze, np.tile, plt.ginput, …
Liens vers les docs : Tuto général Python Tuto scikit-image

Tuto numpy, matplotlib, scipy

https://docs.python.org/fr/3/tutorial/index.html
https://www.cours-gratuit.com/tutoriel-python/tutoriel-python-les-bases-de-traitement-dimages-avec-scikit-image
https://www.math.univ-toulouse.fr/~pmaillar/cours/modelisation2020/liste%20de%20commandes%20Python.pdf

Exercice

 26

Affichage d’images

Nom Donnée Problématique

Mandrill challengeA.npy Format numérique

Radio challengeB.npy Intervalle d’intensité

World map challengeC.npy Palette discrète

 A = np.load('challengeA.npy')

● Trouver une façon satisfaisante d’afficher les images :
challenge#A-C.npy

Attention, ici on charge les données avec np.load depuis un fichier
archive .npy, pour récupérer des données matricielles (avec probablement
des problèmes à traiter…).
Le reste du temps, on utilisera plt.imread() pour lire des images aux
formats .jpg, .png, etc.

 28

Synthèse d’images

#solution longue (7 lignes)
x = range(-34,35)
y = range(-32,33)
img1 = np.zeros((len(y), len(x)))
for i in range(0, len(y)):
 for j in range(0, len(x)):
 r = np.sqrt(x[j]**2+y[i]**2)
 img1[i,j] = 1000*np.sin(r/2)/r
plt.figure(1)
plt.imshow(img1)

%solution courte (3 lignes)
X, Y = np.meshgrid(range(-34, 35), range(-32,33))
R = (X**2 + Y**2)**0.5;
img2 = 1000*np.sin(R/2)/R;
plt.figure(2)
plt.imshow(img2)

Synthèse analytique en couleurs indéxées

 29

Fonction np.meshgrid

Objectif : Se passer des boucles de parcours Hauteur/Largeur

Exemple : X, Y = np.meshgrid(range(0,31), range(0,21))

x_v = range(0, 31)
y_v = range(0, 21)
I = np.zeros((len(y_v), len(x_v))
for i in range(0, len(y_v)):
 for j in range(0, len(x_v)):

 I[i,j] = y_v[i]**2 + x_v[j]**2

x_v = range(0, 31)
y_v = range(0, 21)
X, Y = np.meshgrid(x_v, y_v);
I = X**2 + Y**2

Crée deux matrices de taille
21x31 qui stockent en valeur
pour chaque pixel :
 X : le numéro de colonne
 Y : le numéro de ligne

24

5

24

24

5

5

X Y

20

20

2

2

 30

Fonction np.meshgrid

Objectif : Se passer des boucles de parcours Hauteur/Largeur

Exemple : X, Y = np.meshgrid(range(-15,16), range(-10,11))

x_v = range(-10, 21)
y_v = range(-10, 11)
I = np.zeros((len(y_v), len(x_v))
for i in range(0, len(y_v)):
 for j in range(0, len(x_v)):

 I[i,j] = y_v[i]**2 + x_v[j]**2

x_v = range(-10, 21)
y_v = range(-10, 11)
X, Y = np.meshgrid(x_v, y_v);
I = X**2 + Y**2

Crée deux matrices de taille
21x31 qui stockent en valeur
pour chaque pixel le numéro
de colonne (X) et le numéro
de ligne (Y)

24

5

24

9

5

-5

X Y

20

10

-13

2

0

0

 31

Synthèse d’images

Nx = 25
Ny = 25
x = range(0, Nx)
y = range(0, Ny)

X, Y = np.meshgrid(x, y)

R = (1-np.mod(X,2))*(1-np.mod(Y,2))
G = np.mod(X+Y,2)
B = (1-np.mod(X+1,2))*(1-np.mod(Y+1,2))

I = np.stack((R,G,B), axis=2).astype('double')

plt.figure(1)
plt.imshow(I)

Synthèse en « vraies couleurs »

 32

Synthèse additive

● Écrire une fonction disk qui génère cette image :

En « vraies couleurs »

En couleurs indexées

La taille de l’image, la largeur des cercles et leur espacement seront des
paramètres.

 35

size = 255
radius = 70
dist = 45

R, G, B = p1_disks(size, radius, dist)
h, w = R.shape

#Créer l'objet vidéo avec VideoWriter
video = cv2.VideoWriter('video.avi', cv2.VideoWriter_fourcc('M','J','P','G'), 5, (w, h))

for n in range(0,100):

 q = np.mod(n,3)

 if (q == 0): #C1=Rouge-C2=Vert-C3=Bleu
 img = np.stack((R,G,B), axis = 2).astype('uint8')
 elif (q == 1):
 img = np.stack((B,R,G), axis = 2).astype('uint8')
 else:
 img = np.stack((B,G,R), axis = 2).astype('uint8')

 #Ajout du frame dans la vidéo
 video.write(img)

video.release()

Synthèse additive dynamique

● Création d’une vidéo avec openCV :

Exercice

 36

Bonus : Timer

● Créer un timer animé sous forme de camembert progressif

 37

Espaces chromatiques

Cube RGB

1 axe achromatique
(niveau de gris)1 triangle chromatique

 38

Distances perçues non « uniformes »

)0,0,1(

)0,1,0(

)1,0,0(

)0,0,0(

2.0d

Espace RGB
● Information de couleur et d’intensité mélangée dans les trois canaux
● Luminance globale donnée par L = (R+G+B)/3
● Perception différente selon les trois canaux

Espaces chromatiques

 39

Espaces couleurs

Niveaux de gris

Palettes de primaires pures
(intensités identiques et autres composantes éteintes)

Espace RGB
● Sensibilité aux contrastes différente sur les trois canaux

[0, 123, 0]

 40

Espaces couleurs

Rouge/Bleu

Rouge/Vert pondération plus faible

BVRY 114.0 587.0 299.0 

Canal Y de luminance « perceptuelle »
● Tient compte de la sensibilité aux couleurs de l’oeil humain

 41

Espaces couleurs

Espace XYZ
● Introduction de l’espace CIE-XYZ : XYZ LAB, XYZ LUV, ...→ →
● Changement d’espace linéaire

 42

● Par défaut
– Canaux très corrélés
– Non perceptuel

R

G

B

Espaces couleurs

Espace RGB

 43

● Luminance - Chrominance

– Espace perceptuellement uniforme L*

a*

b*

Espaces couleurs

Espace L*a*b*

 44

● Teinte – Saturation – Valeur

– (Hue – Saturation – Value)

– Utile dans les applications graphiques

Espaces couleurs

Espace HSV

H

S

V

 45

● Teinte – Saturation – Valeur

– (Hue – Saturation – Value)

– Utile dans les applications graphiques

Espaces couleurs

Espace HSV

 46

Espaces couleurs

● RGB : acquisition/restitution écran
● HSV/HSL : espace intuitif, vision humaine
● YUV/YCbCr : transmission et codage
● La*b*/Lu*v* : espace uniforme, distance entre les couleurs
● CMY : impression
● XYZ : modélisation des couleurs
● espaces non linéaires
● etc

eI sI

De nombreux espaces couleurs

 47

● Un canal de luminance Y et deux canaux de chrominance Cb Cr
● Utilisé par ex. pour la compression et la transmission hertzienne
● Les composantes sont obtenues par les formules :

Espaces couleurs

Espace YCbCr

● Les canaux Cb et Cr correspondent
respectivement aux contrastes
Bleu/Jaune et Rouge/Cyan.

 48

Espaces couleurs

Espace YCbCr
I = plt.imread('pool.tif')
I = I.astype(‘double’)
R = I[:,:,0]
G = I[:,:,1]
B = I[:,:,2]

#Y = 0.299*R+0.587*G+0.114*B;
#Cb = 0.564*(B-Y)+128;
#Cr = 0.713*(R-Y)+128;

YCbCr = skimage.color.rgb2ycbcr(I)
Y = YcbCr[:,:,0]
Cb = YcbCr[:,:,1]
Cr = YcbCr[:,:,2]

L = (R+G+B)/3;

plt.figure(1)
plt.imshow(I.astype(‘uint8’))
plt.title('I')

plt.figure(2)
plt.imshow(L.astype(‘uint8’))
plt.title('L')

plt.figure(3)
plt.imshow(Y.astype(‘uint8’))
plt.title('Y')

Y Cb Cr

 49

Espace RGB vs YCbCr

Espaces couleurs

 50

R

BG

Espace RGB vs YCbCr

Espaces couleurs

 51

Y

CrCb

Espaces couleurs

Espace RGB vs YCbCrEspace RGB vs YCbCr

 52

Espaces couleurs

Implémentation en TP

RGB YCbCr→
Seuillage

Fusion

Exemple d’application : incrustation (chroma-keying)
● Meilleure séparation des objets grâce aux canaux de chrominance

Exercice

 53

● Convertir l’image pool.tif (hxwx3) en YCbCr (skimage.color.rgb2ycbcr)
● Compresser en taille uniquement les canaux de chrominance CbCr

(skimage.transform.resize) par un facteur r<1 qu’on fera varier
● Reconstruire l’image en ramenant Cb et Cr à leur taille initiale
● Repasser en RGB (skimage.color.ycbcr2rgb) et comparer avec l’image initiale
● Quantifier le gain en taille mémoire

Image initiale Image compressée r = 0.5

Compression dans l’espace YCbCr

Espaces couleurs

Exercice

 54

● Convertir l’image campagne.jpg dans l’espace YCbCr
et en « niveaux de gris »

● Inverser les canaux de chrominance (Cb=255-Cb, Cr=255-Cr)
● Revenir dans l’espace RGB
● Dessiner un petit cercle noir au centre de l’image RGB modifiée et de l’image

originale en « niveaux de gris » (np.meshgrid)
● Afficher l’image RGB transformée, faire une pause, puis afficher sur la même figure,

l’image « niveaux de gris » (plt.figure/plt.imshow/plt.pause(12))
● Lorsque l’image RGB transformée est affichée, fixer le cercle noir. Que voyez-

vous lorsque l’image en « niveaux de gris » s’affiche ?

Image RGB
avec chrominance inversée

Image en « niveaux de gris »Image RGB

Illusion d’adaptation chromatique

Espaces couleurs

Exercice

 55

● Calculer une carte de contours C de l’image home.jpg
(skimage.feature.canny)

● Convertir l’image en YCbCr, puis modifier le canal Y :
Y (255 - α) x (1 – C) + β←

avec α, β [0, 255]∈ 2, des paramètres à régler manuellement
● Repasser en RGB pour obtenir un résultat d’esquisse :

Effet Pencil Sketch

Espaces couleurs

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55

