Mémo Python (1/2)

* Bonnes pratiques :

* Utiliser un vrai éditeur de code Python
(spyder, jupyter-notebook, etc.)
* Se placer dans un dossier dédié
* Toujours écrire dans un script (fichier.py)
* Surveiller le workspace pour voir quelles sont et
surtout la taille des variables
* Consulter I'aide des fonctions (help(function))

* Modules :

* Accéder aux fonctions d’autres modules :
import numpy as np #toutes les fonctions,
possibilité de renommer le module
from signal import convolve
#import d’une seule fonction

import subfolder.my module
#import de ./subfolder/my module.py

* Fonctions :

* Peuvent étre écrites dans le script (avant le code
appelant, comme en C)

def min max(T):
min = min(T)
max_ = max(T)
return min_, max_

* Exécution (spyder) :

- Tout le script : F5 ou <Run>

- Par section : ctrl+enter ou <Run section>
h, w, ¢ = img.shape

#%% Affichage
plt.figure(), plt.imshow(img)

#%% Vectorisation
img vect = img(:)

- Par sélection : F9
h, w, ¢ = img.shape

#Affichage

plt.figure(), plt.imshow(img)

* Principales differences avec Matlab :

* Indices[], a partirde 0 : tableau de taille 1
tab[0]
tab[1-1] = tab[-1]

* Vecteur d’échantillonnage :
range(0,100)

* Opération terme a terme par défaut :
a = np.array([1,2,3,4])
a*a

Mémo Python (2/2)

°* Commandes de bases :

#Modules utiles

import numpy as np #tableau, opérateurs maths
import matplotlib.pyplot as plt #image, affichage
import skimage #par ex. espace couleur ycbcr
from scipy.signal import convolve2d #convolution

#Manipulation d’image

img = plt.imread('path/img.png') #chargement
h, w, ¢ = img.shape #image couleur

print(h)

img vect = img.ravel() #Vectorisation
G = img[:,:,1] #acces dimension 2° canal = vert

#Mise a zéro
img np.zeros((h,w,c)) #ones() existe aussi
img = np.copy(img*0)

#Sous-échantillonnage
img se = img[l:h:4, 1:w:4] #ou img[::4,::4]

#Création d’un vecteur/d’une matrice
mat [[1,11,[2,21,[3,3]]1 #liste de taille 3x2
mat np.array(mat) #np.array

#Produits vecteurs/matriciels
vect = np.array(np.matrix(range(1,11,2))).T
#range(début,fin,pas) #T = transposée

vect 5 1 = vect*vect #terme a terme
vect 5 5 = np.dot(vect, vect.T) #prod. matriciel
vect 1 1 = np.dot(vect.T, vect) #prod. matriciel

#Somme sur matrice nD
sum G = np.sum(G**2) #somme de tous les termes”2
sum G = np.mean(img, axis=2) #conversion niv. gris

#Seuillage sur une matrice
mask = G > 100 #mask = carte binaire (hxw)
#Equivalent a faire :
mask = np.zeros((h,w))
for i in range(0,h):
for j in range(0,w):
if (G[i,j]>100):

mask[i,]j] 1

G[mask==0] = 0 #Mise a zeéro des pixels de G ou mask=0
G = G*mask #Equivalent a multiplication terme a terme

#changement de type
G = G.astype('uint8') #ou G = np.uint8(G)

#changement d’espace couleur
img ycbcr = skimage.color.rgb2ycbcr(img)

#convolution image couleur (méme filtrage sur R,G,B)
filter = np.ones([7,7,1])/49
img f = convolve2d(img, filter , mode='same')

#Affichage

img L = np.mean(img, axis=2)

plt.figure()

plt.subplot(121) #Affichage multiples 1x2
plt.plt(img L[0O,:])

plt.title('Profil de la premiere ligne de L")
plt.subplot(122)

plt.plot(img[0,:,0],'ro") #superposition par défaut
plt.plot(img[@,:,1], " 'g+")
plt.plot(img[0,:,2], color=[0,0,1])
plt.title('Profil RGB de la premiere ligne')
plt.xlabel('x"'), plt.ylabel('Intensité")
plt.show()

Autres fonctions utiles : np.squeeze, np.tile, plt.ginput, ..
Liens vers les docs : Tuto général Python Tuto scikit-image
Tuto numpy, matplotlib, scipy

