Introduction au traitement d'images

Enseignement intégré TS223 | Systèmes Électroniques Embarqués 2A | 2024-2025

Chapitre 5 : Transformée de Fourier

Rémi Giraud

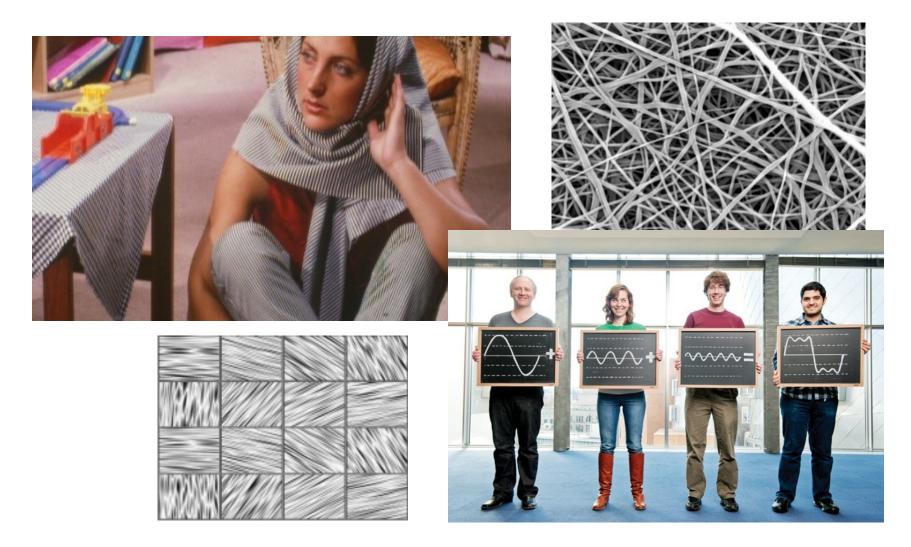
remi.giraud@enseirb-matmeca.fr https://remi-giraud.enseirb-matmeca.fr/

Plan

- Introduction
- Formation / Acquisition
- Image couleur
 - Format/Affichage/Synthèse
 - Espaces couleur caractéristiques (YCbCr)
 - Applications : compression, esquisse
- Traitements
 - Filtrage linéaire / non linéaire
 - Applications : débruitage, anonymisation
 - Détection de contours
 - Applications : réhaussement de contraste
- Transformée de Fourier
 - Application : recouvrement fréquentiel
- Compression d'images
 - Application : algorithme JPEG
- Transformation spatiales

Espace des fréquences

Une richesse fréquentielle omniprésente



Espace des fréquences

Transformée de Fourier 2D

Transformée directe

$$F(u,v) = \int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy = TF(f(x,y))$$
variables
fréquentielles

variables
spatiales

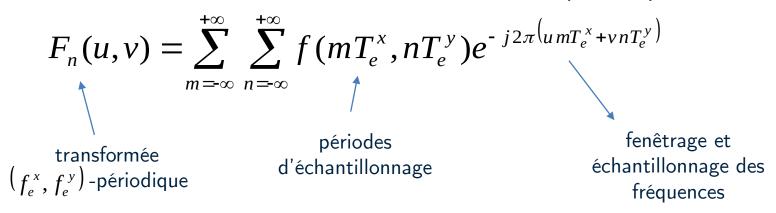
Transformée inverse

$$f(x,y) = \int_{-\infty}^{+\infty+\infty} \int_{-\infty}^{+\infty} F(u,v)e^{j2\pi(ux+vy)}dudv = TF^{-1}(F(u,v))$$

Espace des fréquences

Transformée de Fourier 2D

Transformée continue d'une séquence discrète (TFCD)

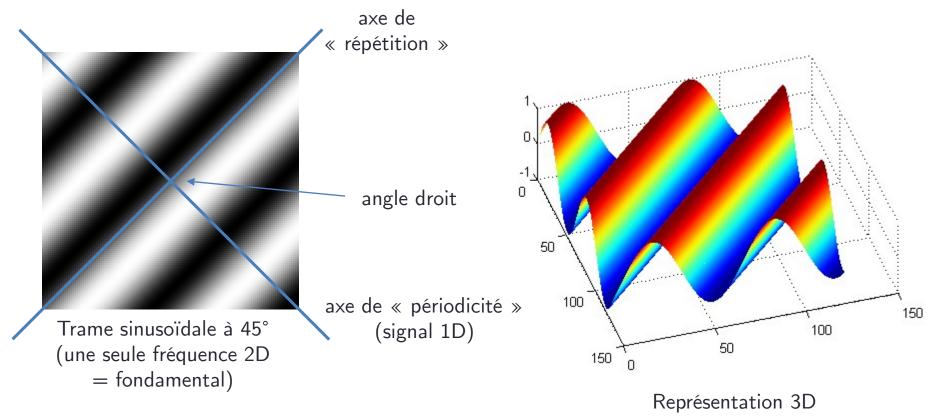


Transformé discrète d'une séquence discrète (TFD)

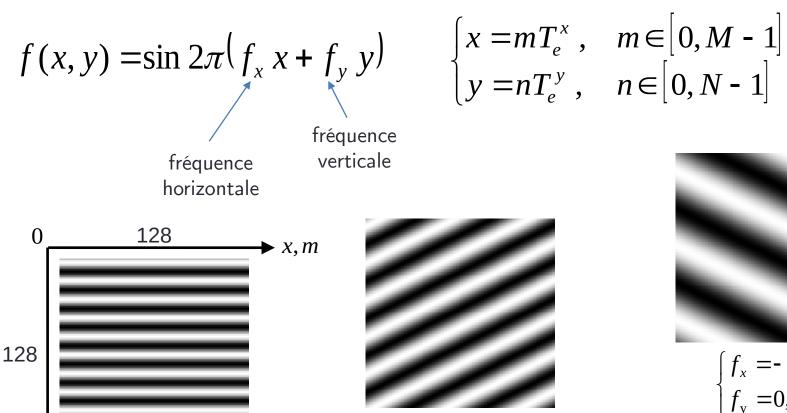
$$F(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)e^{-j2\pi \left(k\frac{m}{M} + l\frac{n}{N}\right)}$$
variables discrètes
$$\begin{cases} k \in [0, M-1] \\ l \in [0, N-1] \end{cases}$$

Signal harmonique 2D

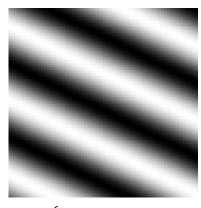
- Sinusoïde parfaite = répétition d'un motif selon un certain axe
- Texture = image périodique



Signal harmonique 2D



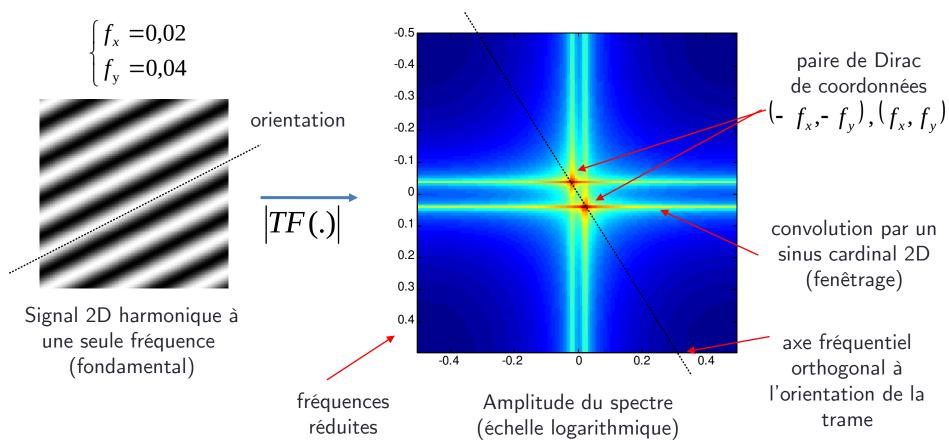
$$\begin{cases} x = mT_e^x, & m \in [0, M-1] \\ y = nT_e^y, & n \in [0, N-1] \end{cases}$$



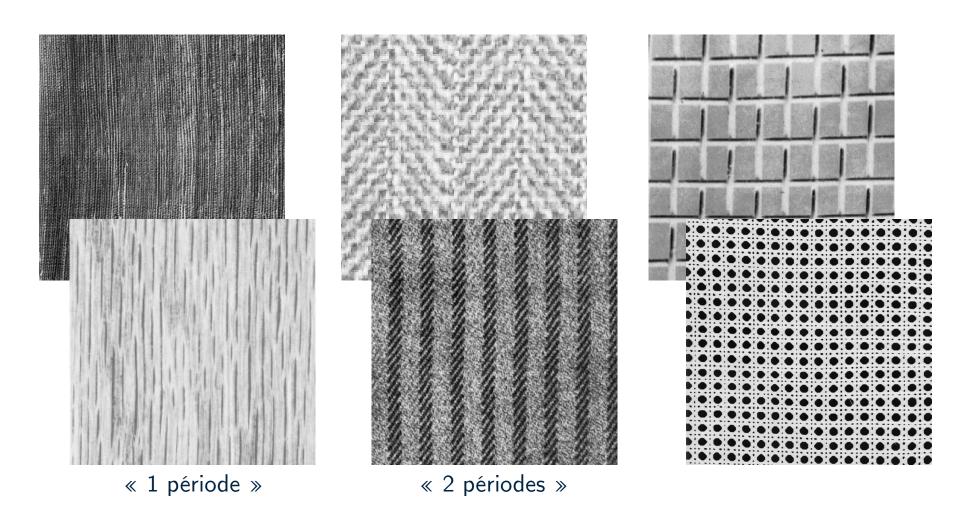
$$\begin{cases} f_x = -0.01 \\ f_y = 0.02 \end{cases}$$

Signal harmonique 2D

$$f(x,y) = \sin 2\pi (f_x x + f_y y)$$

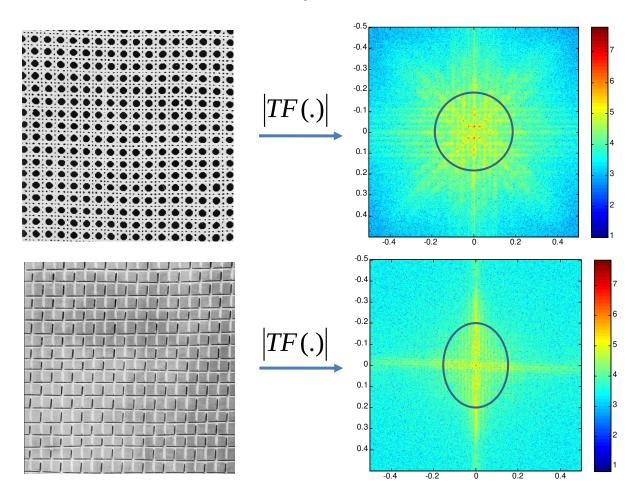


Textures pseudo-périodiques



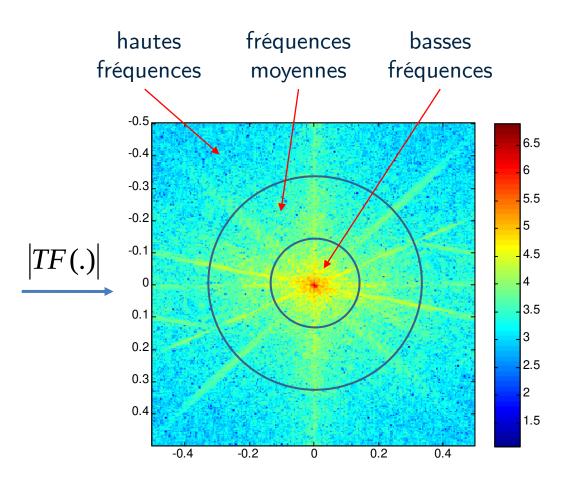
Textures pseudo-périodiques

• « Paires de Dirac » diffuses correspondant à des fréquences fondamentales et des harmoniques

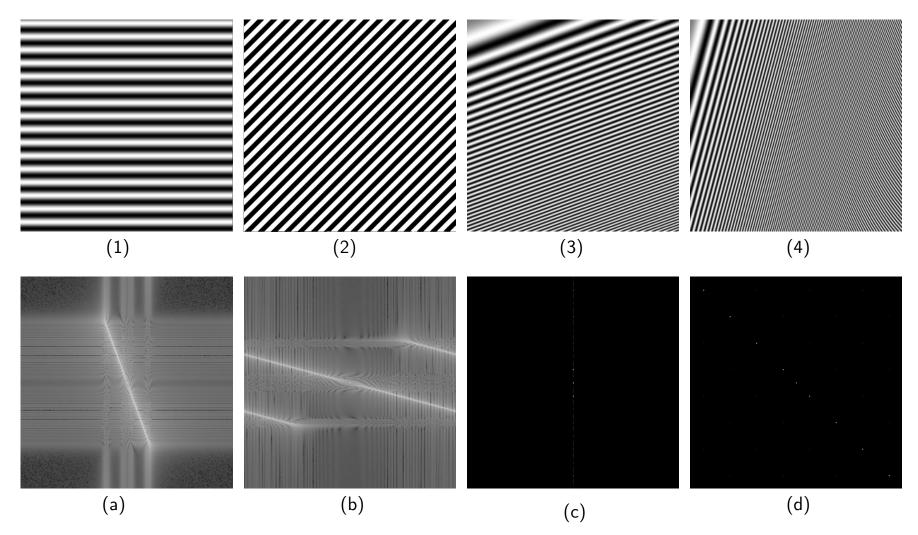


Sur une image naturelle

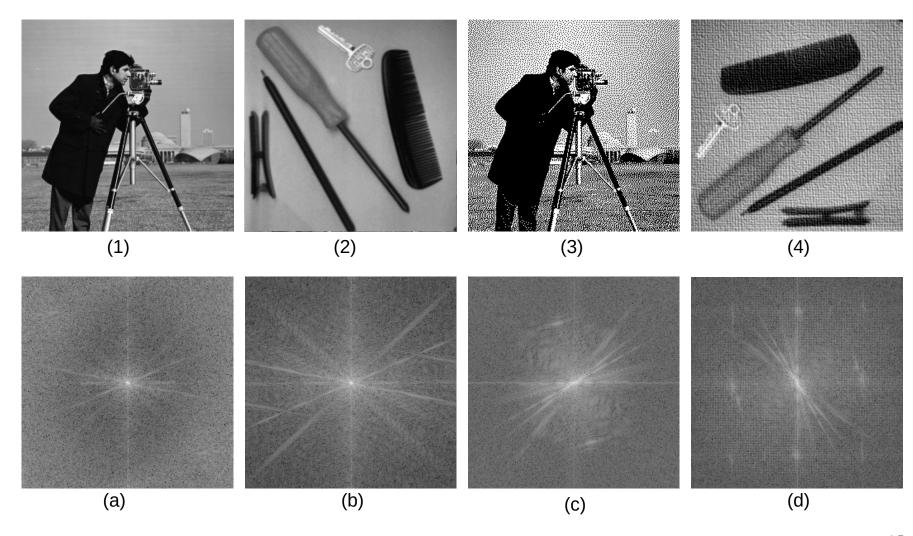
Image naturelle



Quiz : Retrouver à quelles images correspondent ces transformées

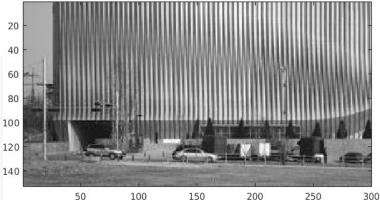


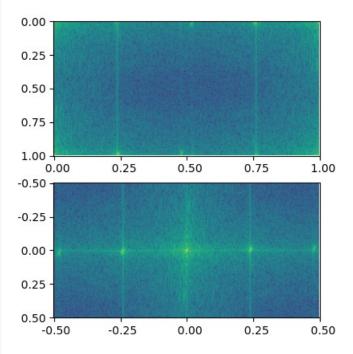
Quiz : Retrouver à quelles images correspondent ces transformées



Affichage

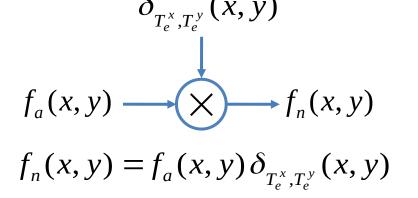
```
A = plt.imread('../img/building.jpg')
                                                         60
plt.figure(1)
                                                         80
plt.imshow(A, cmap='gray')
                                                        100
[h,w] = A.shape
                                                        120
A fft2 = np.fft.fft2(A)
                                                        140
plt.figure(2)
fig,(ax1,ax2) = plt.subplots(2,1)
plt.subplot(2,1,1)
plt.imshow(np.log10(abs(A fft2)))
ticksx = np.linspace(0,w,5)
ticksy = np.linspace(0,h,5)
ticklabelsx = ["{:6.2f}".format(i) for i in ticksx/w]
ticklabelsy = ["{:6.2f}".format(i) for i in ticksy/h]
ax1.set xticks(ticksx)
ax1.set xticklabels(ticklabelsx)
ax1.set yticks(ticksy)
ax1.set yticklabels(ticklabelsy)
plt.subplot(2,1,2)
plt.imshow(np.fft.fftshift(np.log10(abs(A fft2))))
ticklabelsx = ["{:6.2f}".format(i) for i in ticksx/w-0.5]
ticklabelsy = ["{:6.2f}".format(i) for i in ticksy/h-0.5]
ax2.set xticks(ticksx)
ax2.set xticklabels(ticklabelsx)
ax2.set yticks(ticksy)
ax2.set yticklabels(ticklabelsy)
```

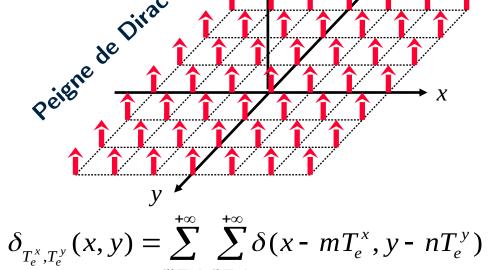




Domaine discret : Échantillonnage par un peigne de Dirac

$$f_n(x,y) = \begin{cases} f_a(x,y) & \text{pour } \begin{cases} x = mT_e^x \\ y = nT_e^y \end{cases} \\ 0 & \text{sinon} \end{cases}$$

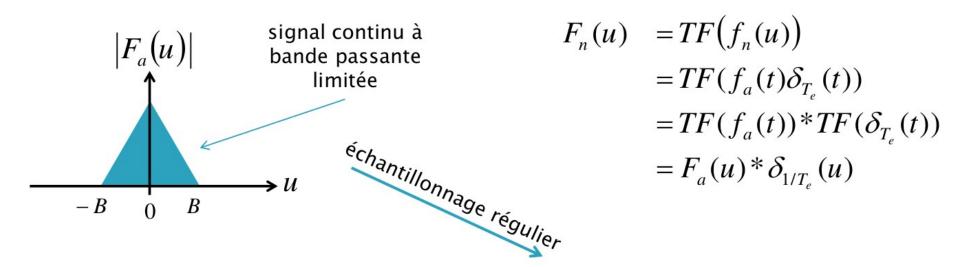




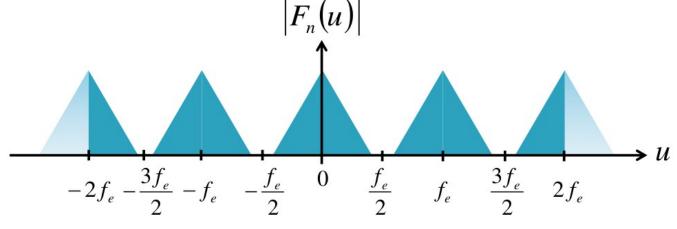
 $\delta_{T_e^x,T_e^y}(x,y)$

ightarrow Séquence discrète $f_n(x,y)$ notée $f(mT_e^x,nT_e^y)$ ou f(m,n)

Périodisation du spectre dans l'espace fréquentiel



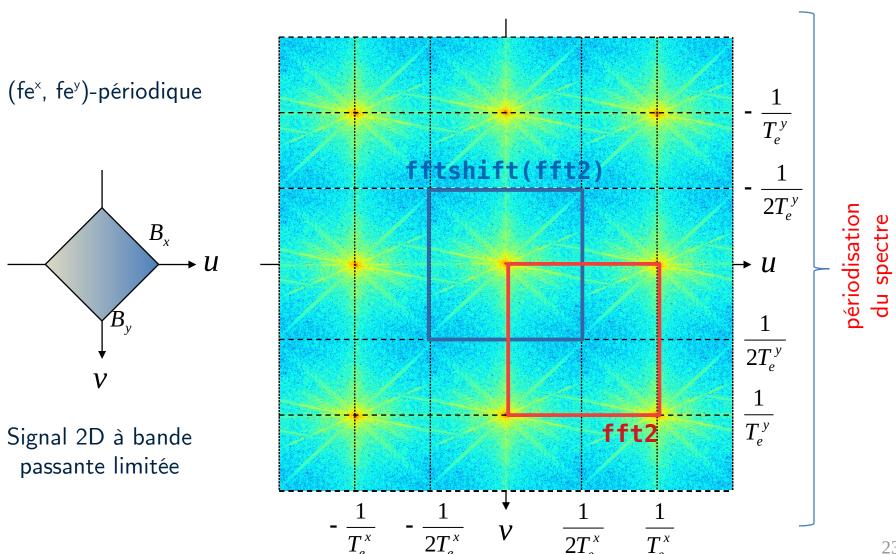
Périodisation du spectre



Périodisation du spectre dans l'espace fréquentiel

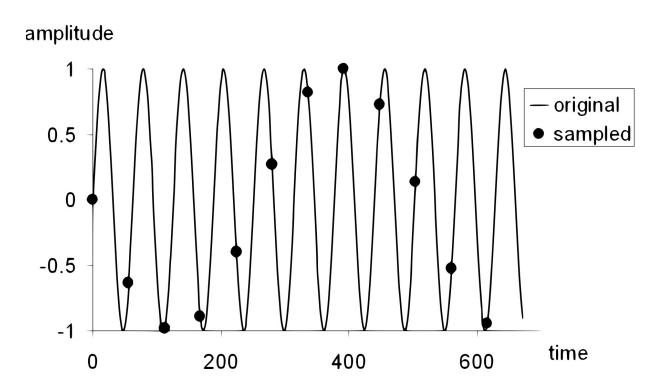
(fe^x, fe^y)-périodique $\overline{T_e^{\,y}}$ $\overline{2T_e^y}$ périodisation du spectre B_{x} U U $2T_e^y$ $\frac{1}{T_e^y}$ Signal 2D à bande passante limitée

Périodisation du spectre dans l'espace fréquentiel



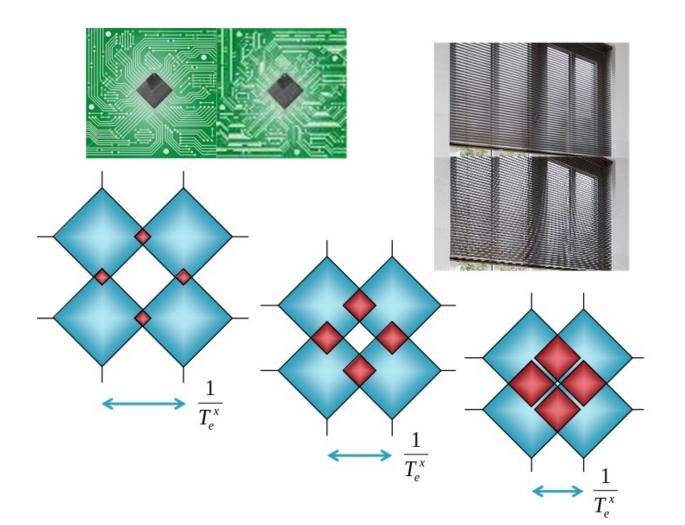
Phénomène d'Aliasing (ou repliement spectral)

- Choisir une période / fréquence d'échantillonnage adaptée pour capturer les variations du signal
- Sinon risque de dénaturer le signal échantillonné



Phénomène d'Aliasing (ou repliement spectral)

• Sur des images naturelles



Filtrage anti-aliasing

- Observer ce problème de repliement de spectre liés à l'échantillonnage spatial en sous-échantillonnant barbara.png ou bricks.png d'un facteur 4.
- Observer également la transformée de Fourier des images.
- Lisser l'image initiale par un filtre passe-bas d'anti-repliement, type Gaussienne, avant le sous-échantillonnage. On comparera ce résultat également à celui obtenu par skimage.transform.resize.

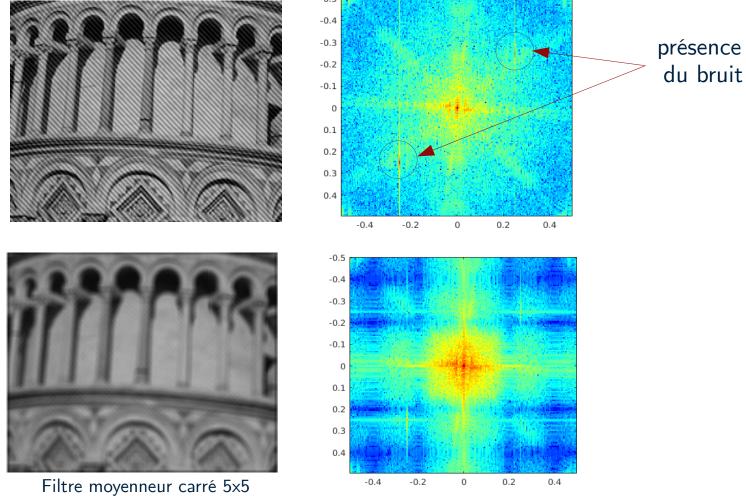
Image initiale (h x w)

Image sous-échantillonnée $(h/4 \times w/4)$

Image filtrée et sous-échantillonnée $(h/4 \times w/4)$

Filtrage fréquentiel

• Bruit fréquentiel. Inefficacité des filtres moyenneurs classiques



Filtrage fréquentiel

• Filtrage par un filtre coupe bande \rightarrow implémentation en TP

