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1 Datasets

Ground-truth Examples of images with their ground-truth segmentation for
the two datasets PSD [7] and WP [8] are respectively shown in Fig. [1]and [2| For
PSD, the ground-truth annotation is fine-grained, with very small objects being
segmented. For WP, we can note that the segmentation is more at semantic
object level (car, truck, road, etc.), and also that only the lower half of images
contain annotations.

List of images For PSD, we used 55 images for training (#4 to #58), 5 images
for validation (#1,2,3 and #59,60), and 15 images for testing (#61-75). For WP,
we used 300 images for training (#1-300), 100 for validation (#301-400) and 100
for testing (#401-500).

Image Labels

Fig. 1. Examples of spherical images and associated ground-truth segmentations con-
sidered for experiments from the Panorama Segmentation Dataset (PSD) [7]. Note the
annotation precision with very small objects being segmented.
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Fig. 2. Examples of spherical images and associated ground-truth segmentations con-
sidered for experiments from the WildPass (WP) dataset [8]. Only the bottom half of
the image contains annotations.

2 Data Augmentation

In this Section, we illustrate the impact of the random parameters in our data
augmentation techniques. In Fig. [3] random half-width crop are selected on the
input images and mirrored to create new spherical image and ground-truth. In
Fig. E|, the random settings of the k, and k, parameters in the panoramic stretch-
ing algorithm [6] enable to warp the image and ground-truth while preserving
the spherical properties.

Fig. 3. Crop & mirror augmentation for different cropping positions. This method
combines horizontal rolling, flipping and also creates information at the mirror border.
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ke = 1.25,k, = 0.5

Fig. 4. Panoramic stretch augmentation for different settings. The parameters kz, ky
when set > 1 or < 1 respectively correspond to an enlargement or a shrinking of the
areas where 3D coordinates |z| &~ 1 and |y| & 1). The layout of the scene is represented
by the green lines to more easily apprehend the distortion.

3 Parameter Settings and Training Details

The code of our method is based on a PyTorch implementationf’|of SSN. Our data
augmentation is applied on-the-fly during training. These include (i) applying
a random Gaussian blur with a variance o ranging from 0 to 2, (ii) adding
Gaussian noise of variance between 0 and 20, (iii) random horizontal rolling and
flipping with half-width random crop and mirror with a 0.5 probability, and (iv)
panoramic stretching with random parameters %k, and k, between 0.5 and 2.
Each channel of the input data (Lab F. and 3D coordinates Fy) is normalized
between -1 and 1. As in [4], color 7. and position v, scale factors are respectively
applied to input features F,, and F, and here set to and 0.6 and 10x v/ K /h during
training with A = 1 in (2). Note that using different -, and ~; for the inference
can impact the regularity of the segmentation.

The training was conducted over 300k iterations, for K = 200 superpixels,
with a batch size of 6 images, using Adam optimizer and a learning rate set at le-
4, as in [4]. Training images were downsized to 256x512 pixels, so our model can
understand the whole scene’s geometry, contrary to the 201x201 crops used in
[4]. Training was performed on a NVIDIA Titan V GPU with 12 GB of memory.

4 Qualitative Results

In Fig. 5} [6] and [7], we respectively show qualitative results on PSD images, noisy
PSD images and WP images for the proposed DSS and state-of-the-art methods.

3 lhttps://github.com/perrying/ssn-pytorch
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Fig. 5. Qualitative comparison on PSD images, for planar (left) and spherical methods
(right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right).
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SSN-PSD

Fig. 6. Qualitative comparison on noisy PSD images, for planar (left) and spherical
methods (right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom
right).
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Fig. 7. Qualitative comparison on WP images, for planar (left) and spherical methods
(right) for two superpixel numbers K = 1200 (top-left) and K = 400 (bottom right).
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