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Introduction

Many domains, for many applications:

Medical

| Computer graphics

Image analysis
’ - and processing




Introduction

Goal: To automatically generate a result for an input data.

Segmentation and labeling example:

result
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Introduction

Goal: To automatically generate a result for an input data.

Segmentation and labeling example:

— Necessity to use a extern source of information.

example with ground truth

result

image
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Non-local patch-based methods:
Search for matches for each pixel (patch) of the input image.
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Introduction

Non-local patch-based methods:
Search for matches for each pixel (patch) of the input image.

examples with ground truth

image

result

Stake n°1: To propose an algorithm that computes these matches:

@ in a library of example images
o without learning step

@ in a fast way
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Intro n

Data sometimes sizeable and high computational times.

3D volume HD image Video
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Introductio

Data sometimes sizeable and high computational times.

3D volume HD image

— Methods to reduce the resolution

@ Regular multi-resolution :
Decompose the image into regular blocks.

Image Decomposition into blocks Average colors
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Data sometimes sizeable and high computational times.

3D volume HD image Video

— Methods to reduce the resolution

o Superpixels (since [Ren and Malik, 2003]):
Local grouping of pixels with homogeneous colors.

Image Decomposition into superpixels Average colors

Stake n°2: Irregularity of the decomposition.
— Limits their use into methods using neighborhood.



o

e Matching algorithm based on patches for medical image segmentation
e Matching algorithm based on patches of superpixels and applications
Q Decomposition into regular superpixels

© Conclusion and perspectives



© Matching algorithm based on patches for medical image segmentation
o Context
o State-of-the-art
@ The OPAL method
o Segmentation results
o Conclusion



Context

o Cerebral images for neurodegenerative diseases (e.g., Alzheimer).
o Analysis of impacted structures necessary for patient follow-up.
Manual segmentation very time consuming.
High inter-expert variability.

Advanced

“ Alzheimer

healthy
brain

hippocampus

— To propose automatic, precise and fast segmentation methods.
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State-of-the-art - Deformation methods

Computation of non-linear transformation.
Deformation of the model’s structure.
[Collins et al., 1995]

. . . 1 Non-linear
— Very important computational time ) transformation
(hours).

reference model

subject to segment with manual segmentation
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Multi-template approach.

State-of-the-art - Deformation methods

Computation of non-linear transformation.
Deformation of the model's structure.

[Collins et al., 1995]

— Very important computational time
(hours).

| Non-linear registrations I
Pusn 9w v B - -
“Fj .A’-,.‘»;.‘s"!.; \;T A

TR

subject to segment

[Heckemann et al., 2006]

Label

N

estimator map of
segmentation

Non-linear
transformation

reference model
with manual segmentation

fusion Thresholding
- \

final segmentation



State-of-the-art - Patch-based method | ]

Linear registration (minutes). Label fusion ([Buades et al., 2005]):
Weighted average of the model's patches oy @ (POx1), P(xy)) L (3;)
in a restricted search area. L(x;) =

E{Xj} “’(P(xi)vp(xj))

models with their manual segmentations L

P
=) Patch-based label fusion of all patches within a
; restricted area

subject to segment TS smmmmmsssssssssssssssssssssssssssssssssss - estimator map

— Necessary preselection and high number of considered dissimilar patches.
— Computational time &~ 10mn by subject.



State-of-the-art - Patch-based method | ]

Linear registration (minutes). Label fusion ([Buades et al., 2005]):
Weighted average of the model's patches oy @ (POx1), P(xy)) L (3;)
in a restricted search area. L(x;) =

Z{Xj} “’(P(xi)vp(xj))

models with their manual segmentations L
- .

P
=) Patch-based label fusion of all patches within a
; restricted area

subject to segment TS smmmmmsssssssssssssssssssssssssssssssssss - estimator map

Proposition: To use a fast matching algorithm to compute several good matches
within the models.
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State-of-the-art - Matching algorithm

Choice of the PatchMatch algorithm [Barnes et al., 2009]:
Computation of a match in B for each patch of A.
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State-of-the-art - Patch-based method

Linear registration (minutes). Label fusion ([Buades et al., 2005]):
Weighted average of models patches oy @ (POx1), P(xy)) L (3;)
in a restricted search area. L(x;) =

Z{Xj} “’(P(xi)vp(xj))

models with their manual segmentations L
- .

P
=) Patch-based label fusion of all patches within a
; restricted area

subject to segment TS smmmmmsssssssssssssssssssssssssssssssssss - estimator map

Proposition: To use a fast matching algorithm to compute several good matches
within the models.
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State-of-the-art - Patch-based method

Linear registration (minutes). Label fusion ([Buades et al., 2005]):
Weighted average of models patches oy @ (POx1), P(xy)) L (3;)
in a restricted search area. L(x;) =

Z{Xj} “’(P(xi)vp(xj))

models with their manual segmentations L
3

S S .

‘
=) Search for similar patches among the models )
Patch-based label fusion |

subject to segment === === === === eeoeeeoeoooooe estimator map

P(xi)

Proposition: To use a fast matching algorithm to compute several good matches
within the models.
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The OPAL method

Optimized PAtchmatch for Label fusion (OPAL)

Initialization
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Optimized PAtchmatch for Label fusion (OPAL)

Initialization Propagation #1 Random search #1
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Optimized PAtchmatch for Label fusion (OPAL)

Initialization Propagation #1 Random search #1 Multiple matches
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The OPAL method

Optimized PAtchmatch for Label fusion (OPAL)

Initialization Propagation #1 Random search #1 Multiple matches

— Reduced number of patches contributing to the segmentation.
— No necessary preselection.
— Reduced computational time.

10/46



The OPAL method

Independent multi-feature and multi-scale search and fusion.

* Independent + Independent * Aggregation of
multi-feature multi-scale searches estimator maps
processing feature 1

<§:j/Hud4w/hnulnrrnup final segmentation
=) R

— Increase of the segmentation process accuracy.

11/46



Segmentation results

Validation metric [Zijdenbos et al., 1994]:

2| Sexpert NSauto |

Dice(Sexpert»Sauto) = [Sexpert |+ |Sauto]




Segmentation results

Validation metric [Zijdenbos et al., 1994]:

2| Sexpert NSauto |

Dice(sexPert,SaUto) = |Sexpert|+ Sautol

o ICBM dataset: 80 young healthy subjects [Mazziotta et al., 1995]
Inter-expert variability: 90%.

Method Median Dice Computational time
Patch-based [Coupé et al., 2011] 88.2% (x700)
Multi-templates [Collins and Pruessner, 2010] 88.6% (%x4300)
Dictionary learning [Tong et al., 2013] 89.0% (x1000)
OPAL (2015) 90.0% 0.92s

o EADC-ADNI: 100 healthy and unhealthy subjects [Boccardi et al., 2014]
Inter-expert variability: 89%.

Method Average Dice Computational time
Random Forest [Tangaro et al., 2014] 76.0% X
Multi-templates [Gray et al., 2014] 87.6% X
Patch-based [Zhu et al., 2017] 88.3% X
Multi-scale patch-based [Pant et al., 2015] 89.2% (x200)
OPAL (2015) 89.8% 1.48s




Segmentation results

Median subject
Dice = 89.9% |

Initial image




Conclusion

o PatchMatch for a library of 3D images
o New automatic segmentation method
o Results > inter-expert variability in a few seconds

Associated publications:

P Vinh-Thong Ta, Rémi Giraud, D. Louis Collins, and Pierrick Coupé.
Optimized PatchMatch for near real time and accurate label fusion.
Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 105-112, 2014.

P Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, D. Louis Collins, and Pierrick Coupé.
Optimisation de I'algorithme PatchMatch pour la ion de structures i
Actes du Groupe d’Etudes du Traitement du Signal et des Images (GRETSI), 2015.

P Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, Jose V. Manjén, D. Louis Collins, and Pierrick Coupé.
An optimized PatchMatch for multi-scale and multi-feature label fusion.
Neurolmage (NIMG), 124:770-782, 2016.




Extensions of OPAL

o Extension to the cerebellum segmentation [Manjén et al., 2017] [Romero et al., 2017]

I Lobules I, 1T 1 Lobules VIIB
M Lobules 111 M Lobules VIITA
M Lobules IV M Lobules VIIB

Lobules V. B Lobules IX
B Lobules X
[ White matter

Associated publications:

P Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, Jose V. Manjén, and Pierrick Coupé.
Patch-based DTI grading: Application to alzheimer's disease classification.
Proc. of Int. Work. on Patch-based Techniques in Medical Imaging (Patch-MI, MICCAI), pages 76-83, 2016

P Jose V. Manjén, Pierrick Coupé, Jose E. Romero, Vinh-Thong Ta, and Rémi Giraud.
Ceres: A new cerebellum lobule segmentation method.
Dépot logiciel : IDDN.FR.001.470008.000.S.P.2015.000.21000, 2016.

P Jose E. Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, and Min Tae M. Park, et al.
CERES: A new cerebellum lobule segmentation method.
Neurolmage (NIMG), 147:916-924, 2017




Extensions of OPAL

o Extension to the cerebellum segmentation [Manjén et al., 2017] [Romero et al., 2017]

o Extension to the Alzheimer's disease prediction [Hett et al., 2016]

Normal Controls (NC) earlyMCI

Lobules I, 11 M Lobules VIIB. NC
M Lobules 11 B Lobules VIIIA
M Lobules IV B Lobules VIITB
Lobules V. Lobules IX
B Lobules X
[ White matter
lateMCI Alzheimer’s Disease (AD)
AD

Associated publications:

P Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, Jose V. Manjén, and Pierrick Coupé.
Patch-based DTI grading: Application to alzheimer's disease classification.
Proc. of Int. Work. on Patch-based Techniques in Medical Imaging (Patch-MI, MICCAI), pages 76-83, 2016

P Jose V. Manjén, Pierrick Coupé, Jose E. Romero, Vinh-Thong Ta, and Rémi Giraud.
Ceres: A new cerebellum lobule segmentation method.
Dépot logiciel : IDDN.FR.001.470008.000.S.P.2015.000.21000, 2016.

P Jose E. Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, and Min Tae M. Park, et al.
CERES: A new cerebellum lobule segmentation method.
Neurolmage (NIMG), 147:916-924, 2017

15/46



Extensions of OPAL

o Extension to the cerebellum segmentation [Manjén et al., 2017] [Romero et al., 2017]
o Extension to the Alzheimer's disease prediction [Hett et al., 2016]

o Integration into the online platform volBrain [Manjén et Coupé, 2016]

Normal Controls (NC) earlyMCI
Lobules I, 1 B Lobules VIIB g v

M Lobules 11 B Lobules VIIIA e ol NC

M Lobules IV Ml Lobules VIIIB
Lobules V' W Lobules 1X

M Lobules X

O White matter

Instructions

Using volBrainis a very simplo pocoss, consisting o four steps:

1. Fist, yon have to regiter as & new user, o log nto the system i you are aready
regstarnd

lateMCI Alzheimer's Disease (AD)

logn  Upload  Process  GetResits

Associated publications:

P Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, Jose V. Manjén, and Pierrick Coupé.
Patch-based DTI grading: Application to alzheimer's disease classification.
Proc. of Int. Work. on Patch-based Techniques in Medical Imaging (Patch-MI, MICCAI), pages 76-83, 2016

P Jose V. Manjén, Pierrick Coupé, Jose E. Romero, Vinh-Thong Ta, and Rémi Giraud.
Ceres: A new cerebellum lobule segmentation method.
Dépot logiciel : IDDN.FR.001.470008.000.S.P.2015.000.21000, 2016.

P Jose E. Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, and Min Tae M. Park, et al.
CERES: A new cerebellum lobule segmentation method.
Neurolmage (NIMG), 147:916-924, 2017

15/46



o Matching algorithm based on patches of superpixels and applications
o The SuperPatchMatch method
o Application to color transfer
o Superpatch
o Application to segmentation and labeling
o Conclusion



The SuperPatchMatch method

Adaptation of the PatchMatch algorithm to superpixels:

@ Similar initialization and random search.

@ Propagation: necessity to preserve the relative positions between adjacent neighbors.
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The SuperPatchMatch method

Adaptation of the PatchMatch algorithm to superpixels:
o Similar initialization and random search.
@ Propagation: necessity to preserve the relative positions between adjacent neighbors.
— Selection of the neighbor with the most similar orientation.

T+ 013
03y

®)

Aj

. . B(l) .
A ] B

— SuperPatchMatch: fast search algorithm of superpixel-based matches.
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Application to color transfer

Constraints: o Reduced computational time (HD, video)
o Global transfer of the source color palette
@ Respect of the target structures

Target image Transfer result

17/46



Application to color transfer

Constraints: o Reduced computational time (HD, video)
o Global transfer of the source color palette
@ Respect of the target structures

Superpixel-based Color Transfer (SCT):

3) Color fusion

Source image
1) Decomposition 2) Matching with
into superpixels SuperPatchMatch

LI ]
i n

Transfer result
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Application to color transfer

Constraints: o Reduced computational time (HD, video)
o Global transfer of the source color palette

@ Respect of the target structures

Superpixel-based Color Transfer (SCT):

2) Matching with
SuperPatchMatch

LI ]
i t
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Application to color transfer

Problem:
No control of the distribution of selected superpixels in the source image.

Target image Source image

Without constraint

Transfer result Selected superpixels
(average colors)



Application to color transfer

Problem:
No control of the distribution of selected superpixels in the source image.

Solution:
To constrain a source superpixel to be selected no more than € times.

Target image Source image

Without constraint (e = co) With constraint (e = 1)

e,

Transfer result Selected superpixels Transfer result Selected superpixels

(average colors) (average colors)
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Application to color transfer - Results

Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

[Pitié et al., 2007] [Nguyen et al., 2014]
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Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

Target image

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]



Impact of the neigh

Superpixel-based matches:

rho

— No use of the neighborhood, loss of spatial consistency.

Decomposition 1

I

1
!

g
8

L]

3 8
8 8

g
g

g 8
g

Vertical displacement (pixels)
o

‘-

300200-100 0 100 200 300

Horizontal displacement (pixels)

Optical flow representation

Superpixel-based

'
N

Decomposition 2
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Impact of the neigh

rho

Superpixel-based matches:
— No use of the neighborhood, loss of spatial consistency.

388
8 8 8

g 88
8 8

Vertical displacement (pixels)
o

‘-

300-200-100 0 100 200 300

Horizontal displacement (pixels)

Optical flow representation

Decomposition 1

T |

i
:

]

Superpixel-based

'
N

Decomposition 2
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Impact of the neighborhood

Usual distance between regular patches:

y v

Sum of squared differences (patches of size (25 + 1)2):

D(P(p), P(a)) = D0 3 (A@+iy+7) - B +iy' +4)°

i=—s8j=—s




Impact of the neighborhood

Usual distance between regular patches:

y Y

z 2| | P(p)

Sum of squared differences (patches of size (2s + 1)2):

D(P(p), P(a)) = D0 3 (A@+iy+7) - B +iy' +4)°

i=—s8j=—s

How to adapt to superpixels?

o Neighborhood structure preserving the geometry

o Comparison between two elements




Superpatch

o Definition:

All superpixels A;; with their barycenter ¢;; contained into a R radius.

A; superpatch of superpixel A;:
A; = {A;/, such that ||c; —¢;/||2 < R} J




Superpatch

@ Comparison of two superpatches A; et Bj:
B;
Vij = Ci — €5

Ci

Dissimilarity measure:

= > w(Ay, B )d(Fj, FS)
A €A; B/ EBj 7

D(A;, By)=
(A4, By) > w(Ay,Byr)
A;1EA; B/ EB;

Spatial weighting between registered barycenters:

J

lle;r—cr—vijli3
S e e 22}
w(Ai/,Bj/)zexp o
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Superpatch

@ Comparison of two superpatches A; et Bj:

B;
"" Vij = Ci — Cj
e .
X257 A,

Dissimilarity measure:

= > w(Ay, B )d(Fj, FS)
A €A; B/ EBj 7

D(A;, By)=
(A4, By) > w(Ay,Byr)
A;1EA; B/ EB;

Spatial weighting between registered barycenters:

ey —e s =vijl3
Rearmey mvigla

w(Ai/,Bj/)zexp_ o




Superpixel-based matches:
— Spatial consistency with the superpatch.

Decomposition 1 Decomposition 2
T T I 1]
i T
i
OO
Imig 1T
| T
300 [f 11
200 b a1
100 1 14

g
8

g 8
g 8

Vertical displacement (pixels)
o

-300-200-100 .0 100 200 300
Horizontal displacement (pixels)

Optical flow representation Superpixel-based Superpatch-based -
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Application to segmentation and labeling

LFW dataset [Huang et al., 2007]:
1500 example images and 927 test images.
3 labels: hair, face and background.
Decompositions into superpixels provided.

example library

Search for matches
(SuperPatchMatch)

A

image to label decomposition into superpizels superpizel labeling final labeling



Application to segmentation and labeli

@ Impact of the superpatch:

SPM
(superpixels)

SPM

Superpixels Ground truh SPM Vi
(superpatches)

(superpixels)

(superpatches)
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Application to segmentation a

@ Impact of the superpatch:

4

Ground truh SPM PM Superpixels Ground truh SPM SPM
(superpixels)  (superpatches) (superpixels)  (superpatches)
o Comparison to state-of-the-art:
Method Superpixel-wise  Pixel-wise
accuracy accuracy
Spatial CRF [Kae et al., 2013] 93.95% X
CRBM [Kae et al., 2013] 94.10% X
GLOC [Kae et al., 2013] 94.95% X
DCNN [Liu et al., 2015] X 95.24%
SuperPatchMatch (2016) 95.08% 95.43%

26/46



Conclusion

o PatchMatch for superpixels

o Constraint on the distribution of matches

New superpixel neighborhood structure (superpatch)

Competitive results with some learning-based methods

Associated publications:

P Rémi Giraud, Vinh-Thong Ta, Aurélie Bugeau, Pierrick Coupé, and Nicolas Papadakis.
SuperPatchMatch: An algorithm for robust correspondences using superpixel patches.
IEEE Trans. on Image Processing (TIP), 2017.

P Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Transfert de couleurs basé superpixels.
Actes du Groupe d'Etudes du Traitement du Signal et des Images (GRETSI), 2017.

P Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Superpixel-based color transfer.
Proc. of IEEE International Conference on Image Processing (ICIP), 2017.




Application to segmentation and labelin

o Impact of the superpixel decomposition S:

Labeling accuracy

Segmentation accuracy

Labeling accuracy

0.941

0.940 -

0.939

0.938

0.937

0.936

0.935

Ground truth G L(S) L(G)
—g—SLIC
—p— ERGC
< LSC T ‘”
~ 1 ETPS
0.2 0.3 0.4 0.5 0.6 0.7

Regularity
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o Decomposition into regular superpixels
o State-of-the-art
o The SCALP method
o Evaluation of regularity
o Results
o Conclusion



State-of-the-art - The SLIC method

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means Iterative refinement




State-of-the-art - The SLIC method

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means Iterative refinement

Distance between a pixel p and a superpixel Sk:
D(pa Sk) = dcolor(vaFSk) +dspatiaI(XanSk)m J

=P
Fp = [lp, ap, bp] color in the CIELab space

Xp = [zp, yp] position
FSkaXSk average on pixels € Sy,

m regularity parameter



State-of-the-art - The SLIC method

Distance between a pixel p and a superpixel Sy:
D(p, Sk) = dcolor(vaFSk) +dspatia|(va XSk)m J

Limitations:

@ Global regularity parameter — irregular shapes with low m.
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Distance between a pixel p and a superpixel Sy:
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State-of-the-art - The SLIC method

Distance between a pixel p and a superpixel Sy:
D(p, Sk) = dcolor(va FSk) + dspatial(XPv XSk )m J

Limitations:
@ Global regularity parameter — irregular shapes with low m.
@ No contour information — low contour adherence performances.

@ Only local pixel color considered — no robustness to noise.

rEEARR LNy
IESpp ey
vy

Initial image ; ‘
th!:-_'-;e‘.-'f-“%
o

Noisy image
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The SCALP method

Superpixels with Contour Adherence using Linear Path (SCALP):

o Color and contour distance on the linear path P’; to the barycenter of the superpixel

- p

Sk
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The SCALP method

Superpixels with Contour Adherence using Linear Path (SCALP):

o Color and contour distance on the linear path P’; to the barycenter of the superpixel
o Color distance on the pixel neighborhood V' (p)

_= V(p)

Sk
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The SCALP method - Distance on linear path

Color distance on linear path P’;: SV (p
1
dpath(ng Sk) =S ﬁ Z dcolor(an FSk)
PlqePk Sk;




The SCALP method - Distance on linear path

Color distance on linear path P’;:

1
dpath(Plgv Sk) = Bkl Z dcolor(Fq7 FSk)

k
P55 g
k

— Prevents the appearance of irregular shapes by encouraging convexity.

SLIC SCALP



The SCALP method - Distance on linear path

Contour distance on linear path P’;:

dcontour(P];) = 7 max C(q)
qePk

Sk

— Possible use of a contour map C to favor the respect of image objects.
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The SCALP method - Distance on linear path

Contour distance on linear path P’;:

dcontour(Pz) = 7 max C(q)
qePk

Sk

— Possible use of a contour map C to favor the respect of image objects.

X Sk
- X
p s, p

Image (itér. #0) Linear path Max. contour Result
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The SCALP method - Pixel neighborhood

Color distance on the neighborhood V (p):

dneigh.(v(p)y Sk) = Z dcolor(Flh FSk )wpaq
q€V (p)
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Color distance on the neighborhood V (p):
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The SCALP method - Pixel neighborhood

Color distance on the neighborhood V (p):

dneigh(v(p)y Sk) = Z dcolor(Ftb FSk )wP,lI
g€V (p)

= V(p)

— Robustness to noise.

Image . Without neighborhood With neighborhood
Final SLIC distance [Achanta et al., 2012]:
D(Fv Sk) :dcolor(FpaFSk)“Fdspatial(vaXSk)m J




The SCALP method - Pixel neighborhood

Color distance on the neighborhood V (p):

dneigh( ( ) Sk Z dco|0r(FQ7FSk)wPaq
g€V (p)

= V(p)

— Robustness to noise.

Wlthout nelghborhood With nelghborhood

Final distance SCALP: J

D(p, 5) = (dneign.(V (P, Sk) + dpatt (P, Sk) + dagatin(p, St )m) (1 + deontour(P}) )




Results - Qualitative comparison to state-of-the-art

Image ERS SLIC ERGC

Image ETPS LSC SCALP
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Results - Quantitative comparison to state-of-the-art

. . I
o Respect of image objects: N
)\
Image Manual segmentation Superpixels

o Achievable Segmentation Accuracy (ASA) [Liu et al., 2011]
Superposition with the objects of the manual segmentation

o F-measure (F) [Martin et al., 2004]
Contour detection (Precision-Recall curves)
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Image Manual segmentation Superpixels
o Achievable Segmentation Accuracy (ASA) [Liu et al., 2011]
Superposition with the objects of the manual segmentation

o F-measure (F) [Martin et al., 2004]
Contour detection (Precision-Recall curves)

Validation on the BSD dataset: 200 images (321x481 pixels) [Martin et al., 2001]

Method F ASA
ERS [Liu et al., 2011] 0.593 0.951
SLIC [Achanta et al., 2012] 0.633  0.944
ERGC [Buyssens et al., 2014] 0.593  0.948
ETPS [Yao et al., 2015] 0.631  0.943
LSC [Chen et al., 2017] 0.607  0.950
SCALP 0.680 0.954
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\( RS

o Respect of image objects: —(
In b))\

Image Manual segmentation Superpixels

o Achievable Segmentation Accuracy (ASA) [Liu et al., 2011]
Superposition with the objects of the manual segmentation
o F-measure (F) [Martin et al., 2004]
Contour detection (Precision-Recall curves)

Validation on the BSD dataset: 200 images (321x481 pixels) [Martin et al., 2001]

Method F ASA
ERS [Liu et al., 2011] 0.593 0.951
SLIC [Achanta et al., 2012] 0.633  0.944
ERGC [Buyssens et al., 2014] 0.593  0.948
ETPS [Yao et al., 2015] 0.631  0.943
LSC [Chen et al., 2017] 0.607  0.950
SCALP 0.680 0.954

o Regularity of the decomposition:

o Circularity (C) [Schick et al., 2012] ~— Limited evaluation metric
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Evaluation of regularity - Shape regularity

Reference measures in the literature:

Circularity (C) [Schick et al., 2012]:
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Evaluation of regularity - Shape regularity

Reference measures in the literature:

Circularity (C) [Schick et al., 2012]:

47|S|
CS) = ——
|P(S)|?
Regular shapes Standard shapes —©—C-Square  —*—C-Ellipse ~—<— C-Bean
Square Circle Ellipse  Bean
0.830 1.000 0.870 0.580 é)
=

0.480 0.430 0.410 0.440 20 a 0 50

Shape size (pixels)

— Low measure for the square
— No robustness to noise
— No robustness to scale
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Evaluation of regularity - Shape regularity

Definition: a regular shape should be convex

Shape Regularity Criteria (SRC):
S|
SRC(S) = ——
= 1]

Shape S Convex hull Hg  Superposition
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Evaluation of regularity - Shape regularity

Definition: a regular shape should be convex, with smooth contours

Shape Regularity Criteria (SRC):
IS |P(Hs)l
SRC(S) = AN
|Hs| [P(S)]

Shape S Convex hull Hg  Superposition

38/46



Evaluation of regularity - Shape regularity
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Evaluation of regularity - Shape regularity

Definition: a regular shape should be convex, with smooth contours and balanced.

Shape Regularity Criteria (SRC):
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Evaluation of regularity - Shape consistency

SRC = 1.000 SRC = 1.000

@ Insufficient local evaluation

— No taking into account of the consistency
of shapes and sizes.
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o Evaluation of the superpixel shape consistency

Smooth Matching Factor (SMF):
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Evaluation of regularity - Shape consistency

.. . SRC = 1.000 SRC = 1.000
@ Insufficient local evaluation I

— No taking into account of the consistency
of shapes and sizes.

slel

SMF = 1.000  SMF = 0.498

o Evaluation of the superpixel shape consistency

Smooth Matching Factor (SMF):
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Evaluation of regularity - Shape consistency

- . SRC = 1.000 SRC = 1.000
@ Insufficient local evaluation I

— No taking into account of the consistency
of shapes and sizes.

4\

SMF = 1.000

SMF = 0.498

o Evaluation of the superpixel shape consistency

Smooth Matching Factor (SMF):

[Sk|
|1]

sy st
[Sil 15~

SME(S) =1- >

s,eS

/2

1

¥

Decomposition S={S }

Average shape S*

@ Global evaluation of regularity

Global Regularity (GR):

GR(S) = SMF(S) > @SRC(sk)

spes M
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Results - Quantitative

Validation on the standard BSD dataset [Martin et al., 2001].
200 images (321x481 pixels) with manual segmentations.

o Respect of image objects
o Superposition with several objects: ASA
o Contour detection: F-measure

o Regularity of the decomposition
o Regularity of shape and consistency: GR

Method F ASA GR

ERS [Liu et al., 2011] 0.593 0.951 0.195
SLIC [Achanta et al., 2012] 0.633 0.944 0.336
ERGC [Buyssens et al., 2014] 0.593 0.948 0.235
ETPS [Yao et al., 2015] 0.631 0.943 0.494
LSC [Chen et al., 2017] 0.607 0.950 0.238
SCALP 0.680 0.954 0.391
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Results - Quantitative

o Exemplar-based labeling:

(SuperPatchMatch)
| [——ERs
0.942 SLIC
—— ERGC
09411 2 ¢
—E—ETPS
0.940 =
jal
=
2 0.939 -
g +
% 0938 F
°0
E
2 0937
<
| 3
0936
0.935
0.2 0.3 0.4 0.5 0.6 0.7

Regularity (GR)
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Conclusion

o State-of-the-art results with high regularity

o Limited computational time

o Natural extension to supervoxels

Associated publications:

>

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
SCALP: Superpixels with contour adherence using linear path.
Proc. of International Conference on Pattern Recognition (ICPR), pages 2374-2379, 2016.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Décomposition en superpixels via |'utilisation de chemin linéaire.
Actes du Groupe d’Etudes du Traitement du Signal et des Images (GRETSI), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Robust shape regularity criteria for superpixel evaluation.
Proc. of IEEE International Conference on Image Processing (ICIP), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Evaluation framework of superpixel methods with a global regularity measure.
Journal of Electronic Imaging (JEI), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Robust superpixels using color and contour features along linear path.
Computer Vision and Image Understanding (CVIU) (en révision), 2017.




© Introduction

9 Matching algorithm based on patches for medical image segmentation
e Matching algorithm based on patches of superpixels and applications
o Decomposition into regular superpixels

© Conclusion and perspectives



Conclusion

o Context:
Non-local exemplar-based methods
— without learning
— large example datasets
— fast

@ Synthesis of contributions:

1) Low resolution descriptors:
— SCALP, GR, Superpatch

2) Matching algorithms:
— OPAL, SuperPatchMatch, SCT

3) Applications:
— 3D Medical image segmentation
— Alzheimer's disease detection
— Color transfer between images
— Superpixel-based segmentation and labeling
— ...
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Perspectives

@ Supervoxel-based segmentation of 3D medical images
— To adapt SuperPatchMatch for complex structures, e.g., tumors:
— No prior on position
— Contours correlated to the MRI image content

Image Ground truth SuperPatchMatch
Example of 2D segmentation of tumors on the BRATS dataset [Menze et al., 2015]



o Computer graphics (style transfer):

— Important computational time
— Copy of the same parts
— Strict respect of contours

Target image Source image Patch-based
[Frigo et al., 2016]
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o Computer graphics (style transfer):

— Important computational time
— Copy of the same parts
— Strict respect of contours

Target image Source image Patch-based
[Frigo et al., 2016]
— Superpixels to reduce the computational cost
— Constraint search for matches (SCT)
— To force the capture of the image contours

Image inversed SCALP
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P Vinh-Thong Ta, Rémi Giraud, D. Louis Collins, and Pierrick Coupé.
Optimized PatchMatch for near real time and accurate label fusion.
Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 105-112, 2014.

P Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, D. Louis Collins, and Pierrick Coupé.
Optimisation de I'algorithme PatchMatch pour la segmentation de structures anatomiques.
Actes du Groupe d’'Etudes du Traitement du Signal et des Images (GRETSI), 2015.
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Annex

Matching algorithm based on patches for medical image
segmentation



The PatchMatch algorithm

Reconstruction of an image A from the selected patches in an image B

Image A (exhaustive search) (t=10h) Image A [Barnes et al., 2009] (t=14s)
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The PatchMatch algorithm

Coherency Sensitive Hashing [Korman and Avidan, 2011, Korman and Avidan, 2016]

Idea: To use a patch-based hash table to facilitate the search for matches.

— Necessity to have the input image to compute the hashing of example images.

; T z | ; :H

SPEEss.. i SEll=

] N EE ™ | 1 -

| (TH s== = -
A = B A B A = B
Direct accesj’om the table Propagation + table Propaga;n from A



The OPAL method - Label fusion

S subject to segment,

T =A{Ty,...,Tn}n=1,...~ the N example models,

P(x;) € S the 3D patch at the position x; = (z,y,2) € S,
Ki = {x;j,¢} the set of positions of selected patches,

I(xj,¢) the label (0 or 1) given by the expert at voxel x; ¢,

Label fusion:

> w(xixge) L(P(xje)

L(P(x;)) = x;5,6 €K S(x) = 1, if £L(x3) > 0.5
Vo > w (xi,xj) 710, otherwise
x;j £ €K,

Comparison of patches:

) — Plxc )12 R
w(xs, X; ) = exp (1 3 (||P( 1)h(x$(2x3,t)||2 + [I; a2x1||2>>
h(x;)? = o® mif}ci(HP(xi) — P(x5,4)[13 +¢)

Xj.t




The OPAL method - Impact of parameters

Impact of the initialization window size

— Set by default at 13x13x13 voxels
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The OPAL method - Impact of parameters

Very limited computational time
— Independent multi-feature and multi-scale search and fusion

* Independent ¢ Independent * Aggregation of
multi-feature multi-scale searches estimator maps
processing feature 1

% final estimator map final segm
-
=) -

subject to segment ﬁ
R 3

nentation
3 3
N

Jeature N,

Dataset Multi-feature  Multi-scale Median Dice Average Dice p-value Computational time
X X 89.4% 89.1+1.85% < 10~ 12 0.27s
ICBM v X 89.8% 89.6 + 1.68% 0.0131 0.53s
v v 89.9% 89.7 + 1.70% X 0.92s
X X 89.4% 89.2 +1.55% < 10~ 2° 0.49s
EADC-ADNI v X 89.7% 89.6 & 1.45% < 1078 0.95s
v v 90.1% 89.8 + 1.46% X 1.48s
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Very limited computational time
— Independent multi-feature and multi-scale search and fusion

Scale (patch size)
3x3x%x3 5Xx5x5 Final estimator

Intensity of the

Feature
MRI image

Gradient norm

Segmentation



Very limited computational time
— Independent multi-feature and multi-scale search and fusion
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The OPAL method - Results

Validation metric [Zijdenbos et al., 1994]:

H — 2|$expertﬁ$auto|
che(SexperhSauto) - |Sexpert|+‘sauto|

o ICBM dataset: 80 young healthy subjects [Mazziotta et al., 1995]
Inter-expert variability: 90%.

Method Median Dice ~ Computational time
Patch-based [Coupé et al., 2011] 88.2 +2.19% (x700)
Multi-templates [Collins and Pruessner, 2010] 88.6 £ 2.05% (x4300)
Sparse coding [Tong et al., 2013] 88.7 £ 1.94% (x6000)
Dictionary learning [Tong et al., 2013] 89.0 + 1.90% (x1000)
OPAL (2015) 90.0 + 1.70% 0.92s

o EADC-ADNI: 100 healthy and unhealthy subjects [Boccardi et al., 2014]
Inter-expert variability: 89%.

Method Average Dice  Computational time
Random Forest [Tangaro et al., 2014] 76.0 = 7.00% X
Multi-templates [Roche et al., 2014] 86.6 £ 1.70% X
Multi-templates [Gray et al., 2014] 87.6 £ 2.07% X
Patch-based [Zhu et al., 2017] 88.3 £ 2.50% X
Multi-scale patch-based [Pant et al., 2015] 89.2 £ 2.22% (x200)
OPAL (2015) 89.8 + 1.46% 1.48s




The OPAL method - Adding subjects to the library

The complexity of OPAL only depends on the subject size:
— Adding automatically segmented subjects to the library

Median Dice Coefficient -~ EADC-ADNI

n’randomly selected
n manual segmentations (EADC-ADNI) automatic segmentations (ADNI1)

Template
Library

Subject to be l
‘segmented

150

0.9012 z
2 164 ]
0.9011 <
| 1.62
0.901 8
< 16
0.9009 w
0.9008 L 158
0.9007 g 1.56
0.9006 g 154
0.900! g 1.52 4
0.9004 g 15 1
0.9003 8 148 )
0.9002 8148 y . . -
100 110 120 130 140 150 = 100 110 120 130 140
Number of subjects in template library Number of subjects in template library



The OPAL method - Application to cerebellum segmentation

Several complex and adjacent structures
— Weighting and regularization of estimator maps [Romero et al., 2017]

Comparison to MAGET [Park et al., 2014] and RASCAL [Weier et al., 2014]
Computational time: MAGET (2h), RASCAL (4h), CERES (1mn)

Expert MAGeT RASCAL

CERES

Lobules I, 11 1 Lobules VIIB
M Lobules i1 M Lobules VIIIA
M Lobules 1V M Lobules VIITB

Lobules VB Lobules IX
W Lobules VI M Lobules X
W Crus T [ White matter
W Crus 11

Structure MAGeT RASCAL CERES Intra-expert
Lobule I-1I 0.3960 + 0.1424 0.3260 + 0.2178 0.5201 £ 0.1555 0.639
Lobule 111 0.6800 + 0.1741 0.6379 + 0.2165 0.7213 £ 0.1572 0.751
Lobule IV 0.6980 + 0.1440 0.6627 + 0.1611 0.7271 =+ 0.1346 0.818
Lobule V 0.7320 + 0.1398 0.6666 + 0.1560 0.7561 =+ 0.1332 0.881
Lobule VI 0.8710 + 0.0359 0.7969 + 0.0523 0.8695 + 0.0316 0.912
Lobule Crus | 0.8870 + 0.0257 0.8383 + 0.0351 0.9007 + 0.0152 0.904
Lobule Crus Il 0.7780 =+ 0.0679 0.7340 + 0.0667 0.8096 =+ 0.0569 0.900
Lobule VIIB 0.5990 =+ 0.1487 0.5820 + 0.1137 0.6850 =+ 0.1205 0.863
Lobule VIIIA 0.7300 + 0.0934 0.6757 + 0.1426 0.7926 + 0.0759 0.860
Lobule VIIIB 0.7970 + 0.0607 0.7783 + 0.0931 0.8533 + 0.0390 0.833
Lobule IX 0.8560 + 0.0384 0.8460 + 0.0545 0.8849 + 0.0327 0.874
Lobule X 0.7540 =+ 0.0490 0.7237 + 0.0680 0.7548 + 0.0469 0.760
Cerebellum 0.9250 + 0.0094 0.9349 + 0.0089 0.9377 =+ 0.0090 0.941
Average 0.7320 + 0.0568 0.6890 + 0.0524 0.7729 + 0.0427 0.833
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The OPAL method - Application to Alzheimer’s disease prediction

Automatic classification using OPAL for the search of matches.
Label fusion of the pathologies of the library models.
(NC = Normal Controls, AD = Alzheimer Disease, MCl = Mild Cognitive Impairment)

NC
subject to Preprocessin Search for matches Average on the Final )
classify CPrOCESSINE 1 and label fusion [~ hippocampus [—>| classification [~ diagnosis
subject
NC models AD models AD

Classification performances on several features.

Features NC vs AD NC vs MCI AD vs MCI eMCl vs IMCI
Volume 88.4/83.1 69.5/63.9 71.1/67.2 67.2/63.7
FA 64.2/59.2 57.7/56.1 54.0/52.7 38.2/43.1
Average MD 85.7/80.3 66.0/62.6 75.0/72.5 67.6/62.8
AxD 83.5/81.4 63.5/58.0 74.3/70.2 68.9/66.8
RD 86.2/79.2 66.5/62.3 74.8/70.5 66.0/61.5
T1 93.4/87.8 71.3/64.1 82.0/73.4 68.7/66.2
FA 85.0/80.1 63.5/60.1 74.9/70.3 63.0/60.7
OPAL MD 90.6/86.5 68.8/60.7 80.4/76.3 70.4/65.8
AxD 91.1/85.8 68.7/59.6 80.2/73.1 71.8/67.6
RD 90.3/85.1 68.9/61.0 80.0/76.5 69.3/65.4
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The OPAL method - volBrain

Integration of OPAL to the volBrain platform [Manjén and Coupé, 2016] (http://volbrain.upv.es)
@ Online volumetric study system of cerebral MRI images

o Detailed reports (tissues, white matter, hippocampus, etc.) with segmentation files

@ Since mars 2015, more than 1400 users across the world for more than 45000 processed
MRI images

ain Volumetry Report

Instructions

Login Upload  Process  GetResults

IH corracted and
Original data Filtered data  MNI registered ICC extraction

PV estimation
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Annex

Matching algorithm based on patches of superpixels and
applications



The SuperPatchMatch method

Adaptation of PatchMatch propagation step

Cury = arg}rgin 1067 + ) — O lln

keEN

Selection of the neighbor with the most similar orientation:
M) }




The SCT

Target image Source image

@ Parametric methods: statistics transfer.
[Reinhard et al., 2001, Tai et al., 2005]

— No guarantee to have a relevant color transfer.

o Optimal transport (OT): transfer of color histogram.
[Pitié et al., 2007, Rabin et al., 2012, Frigo et al., 2014]

— The exact transfer may lead to visual outliers.

o Relaxed OT: adaptive transfer of the source colors
using superpixels. [Rabin et al., 2014]

— High computational cost with OT methods.

Rabin et al., 2014
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The SCT method - Global matching of superpixels

Proposed solution: A superpixel in B cannot be selected more than ¢ times.

If a superpixel A; finds a better match By, already taken by e superpixels A;?

Switch between matches:

Switch illustration (e = 2)

C(Ai, Aj) = (D(Ai, By) — D(Ai, B(y))) + (D(A;, Biy) — D(Aj, Br)) -

argmin C(A;, Aj) — By,
If HAj,C(Ai,Aj)<0 Aj
A — By.

— Optimization of the total matching distance >, D(A;, B(;))-



The SCT od - Global matching of superpixels

— With the constraint set by ¢, global selection of the source color palette.

Target image Source image

Without constraint (¢ = co) With constraint (e = 1)

e,

Transfer result Selected superpixels Transfer result Selected superpixels
(average colors) (average colors)
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The SCT method - Global assignment problem

With € = 1, approximation of the optimal assignment problem:
“Given two sets A:{Ai}ie{l,...,\A” and B:{Bj}je{l,...,\B\} with |A| < |B],
association of each A; to a unique B(;y that minimizes 3, D(A;, B(;)).”

Problem addressed with costly optimal algorithms [Munkres, 1957]

Selected colors

0 500 1000 1500 2000
Number of superpixels

Source image B A with constrained SPM

0 500 1000 1500 2000
Number of superpisels

— Close results to the optimal resolution in very reduced computational time.
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The SCT method - Color fusion

@ Fusion of selected colors by non-local means [Buades et al., 2005]:
Superpixel A; = [X;, C;] = [(zi, y3), (74, gi» bi)]-

For all pixels p € A;, contribution of superpixels A;.

Color fusion:
Zj U.)(p, Aj)CB(j)

AP = = A7)

— Only transfer existing source colors.

@ Weighting based on spatial and color similarity:

Distance using covariance information of A;:

w(p, A;) = exp (=0 = )T Q7 (p - A7)

— Respect of the target image structures.



The SCT method - Step summary

Total computational time < 1s (480x360 pixels).

Source image

< 0.2s < 0.1s < 0.3s

Superpixels Transfer of average colors Final result
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The SCT method - Influence of the matching constraint

With the constraint set by ¢, homogeneous selection of the source superpixels.
— Global transfer of the source color palette.

SCT (e = o0)

Target image Transfer result Transfer result

Source image Selection map Selection map

A 30/70



With the constraint set by ¢, homogeneous selection of the source superpixels.
— Global transfer of the source color palette.

SCT (e = o)

SCT (e = 3)

Transfer result Transfer result

-

(=3

[

Source image Selection map Selection map



The SCT method - Comparison to state-of-the-art

Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

[Pitié et al., 2007]

[Nguyen et al., 2014]
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The SCT method - Comparison to state-of-the-art

Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

SCT

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

[Rabin et al., 2014] [Nguyen et al., 2014]



The SCT method - Comparison to state-of-the-art

Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

[Pitié et al., 2007] [Rabin et al., 2014]

[Nguyen et al., 2014]
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The SCT method - Comparison to state-of-the-art

Comparison to: @ Optimal transport [Pitié et al., 2007]
@ Relaxed optimal transport [Rabin et al., 2014]
@ 3D color gamut mapping [Nguyen et al., 2014]

[Pitié et al., 2007] [Rabin et al., 2014]

[Nguyen et al., 2014]
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The SCT method - Several source images

SCT

.

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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SuperPatchMatch - R ess of the superpa
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SuperPatchMatch - R ess of the superpa

Displacements between the superpixel-based and superpatch-based matches
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SuperPatchMatch - Robustness of the superpatch

Displacements between
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SuperPatchMatch - Robustness of the superpatch

Displacements between the superpixel-based and superpatch-based matches
T T I S

Superpixels Superpatches
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Label fusion:
ZTj E)C;” “"(Ai’ T7)

Lo (A) =
e Z%:12Tje)c;'LW(AivTj)

D(A;, T;) | llei —cjll2
w{ds, Ty) = exp <1 B ( h(A0)? 72
‘C(Al) = argmax Ly, (Al)

me{l,...,M}

)

Ground truth

Superpixels

Face

Background

Superpixels A; (test), T (library)
K" = {T;} selected, with label m

Measure D between superpatches A; and T

c¢; barycenter of superpixel A;

h(A;) minimal distance among the D(A;, Tj)

97.60%

v

-

96.41%

Hair

Result £

Labeling probabilities L,



SuperPatchMatch - Impact of parameters
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atchMatch - Impact of paramet

Adaptation of PatchMatch propagation step (94.20% — 95.08%)

Ground truth

AL S L
» o/ &
Y ol 7Y
(i ‘(:’ by
\l\‘ 'y "."V
o/ % )

Without adaptation

T; (iter. #5) Result (93.33%)

With adaptation

]
Tj (iter. #0) Tj (iter. #1) Tj (iter. #5) Result (98.04%)



SuperPatchMatch - Comparison to state-of-the-art

o Comparison to state-of-the-art:

Method Superpixel-wise  Pixel-wise Compfltational
accuracy accuracy time

PatchMatch (9x9) 87.73% 87.02% 3.940s
Spatial CRF [Kae et al., 2013] 93.95% X X
CRBM [Kae et al., 2013] 94.10% X X
GLOC [Kae et al., 2013] 94.95% X 0.323s
DCNN [Liu et al., 2015] x 95.24% X
SuperPatchMatch (2016) 95.08% 95.43% 0.255s

— Similar results to learning-based approaches



o Impact of regularity:
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Annex

Decomposition into regular superpixels



Use of superpixels

Advantages of superpixels:
@ Reduce the number of considered elements
@ Robustness to noise
@ Respect of image objects contours

Regular blocks Quadtree Superpixels
(N=1024) (N=400) (N=289)
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Use of superpixels

Advantages of superpixels:
@ Reduce the number of considered elements
@ Robustness to noise
@ Respect of image objects contours

Decomposition Element

:

Intensity histogram

Average colors
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Use of superpixels

Advantages of superpixels:
@ Reduce the number of considered elements
@ Robustness to noise
@ Respect of image objects contours

Limitations:
@ Shape irregularity — Irregularity of the neighborhood
— Need for regular superpixels

Decomposition into superpixels Adjacency graph
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The SCALP method - Summary of equations

Color distance on the neighborhood:

Vip)
dneigh.(v(p)y Sk) = Z dcolor(qu FSk )'wp,q
q€V(p)
1 dco|0r(an Fs )
Wp,g = 7, €XP (_Tk) Sk

Color distance on linear path:

dcontour(P’;) =1+ Yy ma>§c C(q)
‘ZGPP

Total color distance:

1
Dcouleur(V(p)7 Sk, Pl;) zAdneigh.(V(p)y Sk) ol (1_)\)_ Z dcolor(‘lv Sk)

[Pk
PlqePk

Final distance:

D(p, Sk) = (Dcolor(v(p), Sk, P’;) + dspatial(Xp7 XSk )m) dcontour(Pz)




The SCALP method - Fast distance computation

The distance dneigh. on the neighborhood V' (p) of pixel p can be computed in O(1).

Demonstration:
The distance between features F' in dneigh. reads:

dneigh.(v(p)7 Sk) = Z (Fq - Fsk)zwp,q7

q€V(p)

= > (F:+F3, —2F,Fs,)wp.,
q€V (p)

= Z Fwpq+ Z F§,wp,g —2 Z FyFs, wp,q,
€V (p) €V (p) g€V (p)

=FP +F5 Y wpe—2Fs, > Fawpg,

g€V (p) g€V (p)

= F? + F3, —2Fs, 7.

Fp® = > evim) F?, and F,(V = >_gev(p) Fa, can be pre-computed.
The complexity of dheigh. is hence reduced to O(1) instead of O(N).




The SCALP method - Linear path definition

Path between a pixel p at position X, and a superpixel Sy of barycenter Xg,

Real-time computation with the [Bresenham, 1965] algorithm

e
By
Q

S|




The SCALP method - Comparison to geodesic distances

Sinuous path with geodesics — more irregular superpixels

-

Geodesic distance Linear path distance

Image [Rubio et al., 2016] SCALP
(geodesic) (linear path)
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The SCALP method - Algorithm

SCALP(I, K, C)
1: Initialization of features Sy < [Fsk,Xsk] from a regular grid
2: Initialization of superpixel labels S < 0
3: Pre-computation of features F,,(?) and F, ")
4: For each iteration do
5: Distance d + oo
6: For each S, do
7: For each pixel p in a (2r + 1) x(2r + 1) window centered on X5, do
8: Computation of the linear path PI; [Bresenham, 1965]

9: Computation of D(p, Sk ) using C and P’;
10: If D(p, Sk) < d(p) then

11: d(p) < D(p, Sk)

12: S(p) «+ k

13: For each Sj do

14: Update [Fsk,Xsk]

15: Return S
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The SCALP method - Influence of parameters

o Distance parameters
Neighborhood |V (p)| = (2n + 1)2, A color distance, y contour distance

Initial image n=0, A=1, v=0

n=3, A=1, y=0 n=3, A=0.5, v=50

T

neighborhood color distance contour distance



The SCALP method - Influence of parameters

o Distance parameters
Neighborhood |V (p)| = (2n + 1)2, X color distance,  contour distance

1 0.98
0.9 Y -
O 0.96 O~
o \
0 | 7
0. ~ 4
S 7 ® 0.94 o
@
g _ 06
= S <
Z 05 o092
® z
=] & 04
c 09
0.3 ® Homan
02 * 0.88
P
0.1 4
o 086
0 0.1 02 0.3 04 05 06 0.7 0.8 0.9 1 100 200 300 400 500 600 700
Recall Number of superpixels
1 098
0.9
0.96
0.8
0
0.7
& 094
o 0.6 Y
E =z =
"z Z 05 o 0.92
5 : <
3 = 04
0.9
=z 0.3
0-2 g 088
0.1 s A—0.5,
N O [F = 0.636] n=3, A=0.5, v=50
0 056
0 0.1 02 03 04 05 06 07 08 09 1 100 200 300 400 500 600 700

Recall Number of superpixels




The SCALP method - Influence of parameters

o Contour detection
Even a simple contour detection from the superpixel boundaries obtained at multiple
scales improves the performances.

| hresholding
L =

Average

decompositions average Toundaries B

1 0.97
0.9 ® 096
L\
08 SN 0.95
0.7
0.94
_ 06
=}
Z 05 5o
S <
£
04 0.92
03 @ [F = 0.787] Human
: —— [F = 0.646] SCALPy = 0 091
0.2 —— [F = 0.650] SCALP (%) (Achanta et al., 2012)
: —%— [F = 0.662] SCALP (Maire ct al., 2008)
0.1 | |75 F = 0671 SCALP (Xiaofens and o, 2012) 0.9
. —&— [F = 0.680] SCALP (Dollir and Zitnick, 2013)
o 089 — I . . ~ . .
0 01 02 03 04 05 06 07 08 09 1 10 200 300 400 500 600 700

Recall Number of superpixels




The SCALP method - Initial segmentation constraint

Hard constraint on the initial segmentation

contour prior hierarchical segmentation Tegions initialization
. [——~— | Thresholding
Completion and merging Partition T .
» | = X
> — I T IH!
bard H i
e aavsvE
Contour
detection ¢

Superpixel clustering constrained
by region segmentation

1 o
RIS

initial image SCALP+HC decomposition

Hierarchical segmentation from a contour map [Arbelaez et al., 2009]
Thresholding of the segmentation by a parameter 7
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The SCALP method - Initial segmentation constraint

Adaptation of the hierarchical segmentation to the superpixel scale

°
[ ]
Image Contour map
o\
o /
O O
Hierarchical segmentation Thresholding Fusion



The SCALP method - Initial segmentation constraint

Initial images of the BSD

0.9

0.7 1

0.6 [

SCALP

Precision

@ [F = 0.787] Human
0.4 | —o—[F = 0.593] ERS
—¥— [F = 0.633] SLIC
—— [F = 0.577] SEEDS
—p— [F = 0.593] ERGC
—A—[F = 0.588] WP
0.2 k| [F=0631] ETPS
< [F = 0.607] LSC
—7— [F = 0.646] SCALP =0
0.1 F |4 [F = 0.680] SCALP
—5— [F = 0.709] SCALP+HC

0 L L L L L L L L L ,
0 01 02 03 04 05 06 07 08 09 1

Recall
SEEDS [Van den Bergh et al., 2012] and WP [Machairas et al., 2015] added to the comparison
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The SCALP method - Initial segmentation constraint

Initial images of the BSD + Gaussian noise

1r

0.9 F
08
0.7 F
SCALP
0.6
&)
Z 05
8
~
0.4 [6[—6—[F = 0.424] ERS
—s— [F = 0.506] SLIC
. —— [F = 0.598] SEEDS
03 7| o [F = 0487 ERGC
SCALP+HC —A— [F = 0.460] WP
02 L |+ [F=0611 ETPS
[F = 0.509] LSC
—— [F = 0.637] SCALP 7=0
0.1 F |4~ [F = 0.636] SCALP
—&— [F = 0.640] SCALP+HC
0 01 02 03 04 05 06 07 08 09 1

Recall
SEEDS [Van den Bergh et al., 2012] and WP [Machairas et al., 2015] added to the comparison
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The SCALP method - Results

Image ETPS LSC SCALP
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The SCALP method - Results

Image / Noisy image



The SCALP method - Results

Image / Noisy image




The SCALP method - Results on noisy images
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The SCALP method - Extension to supervoxels

Natural extension to supervoxels for the decomposition of 3D objects

Results on the BRATS dataset [Menze et al., 2015] (MRI with tumors)
ASA 3D: o SLIC 0.9840 [Achanta et al., 2012]
o ERCG 0.9652 [Buyssens et al., 2014]
o SCALP 0.9848

Ground truth Supervoxels Ground truth

Supervoxels
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Regularity metrics - Compromise between the metrics

The metrics cannot be simultaneously optimized.

]
]

Max. color homogeneity Max. color homogeneity

Max. respect of image objects Max. regularity
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Superpixel metrics

Segmentation into superpixels S, ground truth segmentation G
Global Regularity (GR): Shape regularity and consistency of superpixels

ISkl IS IP(Hg)| min(oz,0y)

sRC(S) = S 2k . B )
[I| |Hg| [P(S)| max(oz,0y)
s & &
SMF(5)=1—ZM.H - 2k 2
O IEETRTET

GR(S) = SRC(S)SMF(S)

Precision-Recall (PR): Average of superpixels boundaries at multiple scales [Martin et al., 2004]

_IB(S) N B©)| IB(S) N B(9)] _ 2PBR
BRS,9) = 5] P9 =@ F= b rer

Achievable Segmentation Accuracy (ASA): Respect of the image objects [Liu et al., 2011]

ASA(S,G) = ﬁ max |Sk N G|

Contour Density vs Boundary Recall (CD vs BR): Adherence to contours [Martin et al., 2004]

D(s) = @ BR(S, g) = B NBO)

1] 1B(9)|




Superpixels metrics - CD vs BR

Contour Density vs Boundary Recall (CD vs BR): [Martin et al., 2004]

BE  gos. gy - BE 0BG
H IB()]

cD(S) =

- = S

Image with the Irregular superpixels Regular superpixels
ground truth contours (BR=1.00 | BRx(1-CD)=0.563) (BR=1.00 | BRx(1-CD)=0.858)

05 1

0.4

0.1

0 0
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

BR BR
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Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

1 1 >
V() = 15 % @\/ > U®) — u(Sk))

PES)

Explained Variation (EV): [Moore et al., 2008]

s, 1Skl (u(Sk) = u(D)? 1Skl o(Sk)?
W 770 B3y D DA | e
EV = 0.846 EV = 0.846 _1‘
J‘
ICV = 0.650 ICV = 0.260 ICV = 0.325
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Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

1 1 5
IV(S) = g7 % @\/ > Up) — u(Sk))

pES)

Explained Variation (EV): [Moore et al., 2008]

s, 1Skl (u(Sk) —p(@)? > 1Sk o(Sk)?
Sper I —u)? 50 I To(1)?

EV(S) =

Superpixels Average colors 1 ( Sy, ) Color variance o (S, )2



Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

1 1 2
V() = 15 % A > () — ul(Sk)

pES)

Explained Variation (EV): [Moore et al., 2008]

Xy ISkl ((Sk) = m(D)? S| o(Sk)?
S SR ) BT o3 - I O

sCALP
o SCALP4HC

100 200 300 400 500 600 700 100 200 300 400 500 600 700
Number of superpixels Number of superpixels
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Superpixel metrics - Regularity

o Shape regularity
Circularity (C) [Schick et al., 2012]:

4r|S|

O =1pE

Shape Regularity Criteria (SRC):

sre(s) — JSL IPUL)| min(oa, 0y)
[Fs] [P(S)] max(oz,0y)
Regular shapes Standard shapes Irregular shapes
Square Circle  Hexagon Ellipse Cross Bean w Split U

C 0.830 1.000 0.940 0.870 0.530 0.580 0.150 0.280 0.150

SRC 1.000 0.989 0.987 0.712 0.650 0.564 0.387 0.369 0.233

C 0.480 0.430 0.420 0.410 0.340 0.440 0.100 0.210 0.070

SRC 0.716 0.633 0.625 0.474 0.515 0.500 0.296 0.321 0.136
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Superpixel ics - Regularity

o Robustness to noise
SLIC superpixels with noise on the boundaries

C—0401\SRC 0.562 C—0371|SRC—0570

m = 50 m = 200
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Superpixel metrics - Regularity

o Robustness to noise

SLIC superpixels with noise on the boundaries

m = 10

m = 50 m = 200

Evolution of the regularity parameter m
Average results on the BSD

Régularité

0.60
0.55

—%-C
—A-SRC

8 10 15 20 28 50 75 100 200
Paramétre de régularité m
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Superpixel metrics - Regularity

o Evaluation of the superpixel decomposition consistency

Jaccard [Machairas et al., 2015]:

1 S:nS*

(s = = 3o o .
IS| s12s 1Sz v S|

S* = §* i

afggﬂax(\sﬂz ﬁ) Decomposition S Average shape S* Binary average shape $*

— Does not consider the size of superpixels. Thresholding not robust to large superpixels.

Smooth Matching Factor (SMF): ) )
— Direct comparison to the average shape S*
S Sk S* i
SMF(S) =1- 3 | kl. ko / — More relevant and robust metric
e B (=S R ol
k 1
v
J=0.331 J=0.308 J=0.262
SMF = 0.520  SMF =0.719  SMF = 0.912 SMF = 0.517 SMF = 0.536
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Superpixel metrics - Regularity

o Global evaluation of the regularity: shape and consistency

Global Regularity (GR):

GR(S) = SMF(S) > @SRC(S;C)

spes I

— SCALP generates very regular superpixels while respecting the image contours.

— The evaluation of performances at several regularity levels enables to be robust to the
choice of the regularity parameter and to better represent a superpixel method potential.

0.6 096
—o—BRS  —A—WP
055 | —H—SLIC < LSC
\ —%—SEEDS —— ETPS 0.95
0.5 * + ——ERGC 0 SCALP

0.94
%093
=

0.92

0.25

B—b—p—p P 091

02 M
0.15 0.9
0

100 200 300 400 500 600 700 0.2 0.4 0.6 0.8 1
Number of superpixels Regularity (GR)




Impact of regularity - Video tracking

The regularity of superpixels 9 ||
facilitates the tracking of : =
objects. —

image ¢ image t+1 image t image t+1

Accuracy Loss
. . Sequence Regular Irregular Regular Irregular
Tracking accuracy with the TSP Birdfall2 98.3%  97.8% 1.0% T.4%
girl 51.1%  50.4% 13.9%  24.8%
method [Chang et al,, 2013] on the parachute 75.3%  73.9% 4.5% 5.1%
sequences from [Tsai et al., 2012]. penguin 94.3%  85.0% 2.6% 8.8%
Average 79.8% 76.7% 5.5% 10.0%

Régulier

Irrégulier
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Impact of regularity - Video tracking

The regularity of superpixels 9
facilitates the tracking of :
objects.

image ¢

image t image t+1

image t+1

Accuracy Loss
. . Sequence Regular Irregular Regular Irregular
Tracking accuracy with the TSP Birdfall2 98.3%  97.8% 1.0% T.4%
girl 51.1%  50.4% 13.9%  24.8%
method [Chang et al,, 2013] on the parachute 75.3%  73.9% 4.5% 5.1%
sequences from [Tsai et al., 2012]. penguin 94.3%  85.0% 2.6% 8.8%
Average 79.8% 76.7% 5.5% 10.0%

Régulier

Irrégulier
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Impact of regularity - Image compression

The irregularity facilitate the approximation of the initial colors.
Colors contained into a superpixel approached by a third order polynomial.

Initial image T Regular compression I, Irregular compression I,

Average on the BSD images [Martin et al., 2001]

Mean Square Error (MSE): Pt
1 26
MSE(I, I,) = il ST U - 1(»)? |

pel

MSE (1.1,)
©

0 0.2 0.4 0.6 08 1
Regularity (GR)



Impact of regularity - Image segmentation

The regularity is correlated to performances.

Precision (P)

0 0.1 0.2

0.3 0.4 0.5

5 0.6 0.7 0.8
Regularity (GR)

0.7

0.65

0.2 0.3 0.4 0.5 0.6 0.7
Regularity (GR)

0 0.1 0.2 0.3 0.4 0.5

Regularity (GR)

0.6

0.7 0.8

0.8




Impact of regularity - Image segmentation

The fusion of irregular decompositions may enable to efficiently segment

the image objects.

£ Average

Thesholding|

Images / contours

el

oraresy

Low regularity

High regularity

Images / contours

Low regularity

High regularity
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Impact of regularity - Correlation

Higher correlation between the proposed metrics and the performances.

GR SMF J SRC C
ASA —0.5473 —0.5250 —0.5266 —0.5350 —0.5318
UE 0.5506 0.5284  0.5299 0.5384 0.5353
BR —0.9136 —0.8974 —0.8972 —0.9049 —0.9034
P —0.9627 —0.9645 —0.9656 —0.9688 —0.9712
EV —0.6641 —0.6426 —0.6428 —0.6528 —0.6503
MSE 0.6760 0.6552 0.6554  0.6655 0.6636
Average 0.8165 0.8113 0.8076  0.8122 0.8085
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Annex

Perspectives



Perspectives - Synthesis of non-linear transformation

— To adapt OPAL to the transfer of displacement vectors

Smart fusion of displacement vectors:

L A
> ‘ /
Set of vectors Average vector Median vector [Liu, 2013]

Previous works: Smart fusion of optical flow vectors [Fortun et al., 2016]
Patch-based synthesis of non-linear transformations [Kim et al., 2015]

A 67/70



spectives - Supervoxel-based segmentation of medical images

@ Supervoxel-based segmentation of 3D medical images
— To adapt SuperPatchMatch for complex structures, e.g., tumors:

— No prior on tumor position
— Contours correlated to the MRI image content

Image Ground truth OPAL SPM superpixels SPM superpatches

Example of 2D segmentation of tumors on the BRATS dataset [Menze et al., 2015]
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Perspectives - Style transfer

Patch-based method [Frigo et al., 2016]:

Target image Source image Result

— Important computational time
— Copy of the same image parts
— Transfer of texture and colors = too strict respect of the target contours

— Superpixels to reduce the computational cost
— Constrained search for matches (SCT)
— To force the capture of the image contours

Distance inversed SCALP:

1

D(p, 5y) = (dspatial (P> Sk)m — De(V (p), Sk, Pp)) ———
(p, Sk) (Spatlal(p k)m (V(p), Sk p)) dcontour<P’1§)

inversed SCALP
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Perspectives - Style transfer

Comparison to neural network:

Target image Source image

Patch-based method Neural network

[Frigo et al., 2016] [Gatys et al., 2015]
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