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Introduction

Many domains, for many applications:

Computer graphics

Robotics

Astronomy

Medical

Image analysis 
and processing

Security...
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Introduction

Goal: To automatically generate a result for an input data.

Segmentation and labeling example:

→ Necessity to use a extern source of information.

image result

?
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Introduction

Non-local patch-based methods:

Search for matches for each pixel (patch) of the input image.

example with ground truth

image  result

Stake no1: To propose an algorithm that computes these matches:

in a library of example images

without learning step

in a fast way
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Introduction

Data sometimes sizeable and high computational times.

3D volume HD image Video

Level 1

Level 2

w/2

h/2

w

h

→ Methods to reduce the resolution

Regular multi-resolution : Superpixels (since)
Decompose the image into regular blocks.

Stake no2: Irregularity of the decomposition.

→ Limits their use into methods using neighborhood.
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Context

Cerebral images for neurodegenerative diseases (e.g., Alzheimer).

Analysis of impacted structures necessary for patient follow-up.

Manual segmentation very time consuming.

High inter-expert variability.

healthy
brain
 

Alzheimer

hippocampus

Advanced

→ To propose automatic, precise and fast segmentation methods.
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State-of-the-art - Deformation methods

Computation of non-linear transformation.
Deformation of the model’s structure.

[Collins et al., 1995]

→ Very important computational time
(hours).

Non-linear 
transformation

subject to segment reference model 
with manual segmentation

Multi-template approach. [Heckemann et al., 2006]

estimator map of 
segmentation

Thresholding
Label 
fusion

Non-linear registrations

final segmentation

Recalages non linéaires

...
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State-of-the-art - Patch-based method [Coupé et al., 2011]

Linear registration (minutes).

Weighted average of the model’s patches
in a restricted search area.

Label fusion ([Buades et al., 2005]):

L(xi) =

∑
{xj}

ω(P (xi),P (xj))L(xj)∑
{xj}

ω(P (xi),P (xj))

Recherche de patchs similaires parmi les modèles
Fusion d'étiquettes basée patchs

Preselection of models

models with their manual segmentations L

…

…

Patch-based label fusion of all patches within a   
    restricted area

subject to segment                                                                                                    estimator map

…
…

…

…

→ Necessary preselection and high number of considered dissimilar patches.
→ Computational time ≈ 10mn by subject.
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State-of-the-art - Matching algorithm

Choice of the PatchMatch algorithm [Barnes et al., 2009]:

Computation of a match in B for each patch of A.

A B

Key idea: To use the information from adjacent patches to propagate good matches.

A B

→ The complexity of the algorithm only depends on the size of the image A.
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The OPAL method

Optimized PAtchmatch for Label fusion (OPAL)

T1

T2

T3

S

...

T1

T2

T3

S

...

T1

T2

T3

S
...

T1

T2

T3

S

...

Initialization

Propagation #1 Random search #1 Multiple matches

→ Reduced number of patches contributing to the segmentation.

→ No necessary preselection.

→ Reduced computational time.
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The OPAL method

Independent multi-feature and multi-scale search and fusion.

•Aggregation of 
estimator maps

subject to segment

…

• Independent
multi-scale searches

• Independent
multi-feature
processing

final segmentation

…

…

…

…

feature 1

…

final estimator map
OPAL

feature Nf

OPAL

OPAL

OPAL

→ Increase of the segmentation process accuracy.
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Segmentation results

Validation metric [Zijdenbos et al., 1994]:

Dice(Sexpert,Sauto) =
2|Sexpert∩Sauto|
|Sexpert|+|Sauto|

ICBM dataset: 80 young healthy subjects [Mazziotta et al., 1995]

Inter-expert variability: 90%.

Method Median Dice Computational time

Patch-based [Coupé et al., 2011] 88.2% (×700)

Multi-templates [Collins and Pruessner, 2010] 88.6% (×4300)

Dictionary learning [Tong et al., 2013] 89.0% (×1000)

OPAL (2015) 90.0% 0.92s

EADC-ADNI: 100 healthy and unhealthy subjects [Boccardi et al., 2014]

Inter-expert variability: 89%.

Method Average Dice Computational time

Random Forest [Tangaro et al., 2014] 76.0% ×
Multi-templates [Gray et al., 2014] 87.6% ×
Patch-based [Zhu et al., 2017] 88.3% ×
Multi-scale patch-based [Pant et al., 2015] 89.2% (×200)

OPAL (2015) 89.8% 1.48s
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Segmentation results

Median subject
Dice = 89.9%

Initial image Sexpert Sopal
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Conclusion

PatchMatch for a library of 3D images

New automatic segmentation method

Results > inter-expert variability in a few seconds

Associated publications:

Vinh-Thong Ta, Rémi Giraud, D. Louis Collins, and Pierrick Coupé.
Optimized PatchMatch for near real time and accurate label fusion.
Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 105–112, 2014.

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, D. Louis Collins, and Pierrick Coupé.
Optimisation de l’algorithme PatchMatch pour la segmentation de structures anatomiques.
Actes du Groupe d’Études du Traitement du Signal et des Images (GRETSI), 2015.

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, Jose V. Manjón, D. Louis Collins, and Pierrick Coupé.
An optimized PatchMatch for multi-scale and multi-feature label fusion.
NeuroImage (NIMG), 124:770–782, 2016.

[1, 2, 3]
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Extensions of OPAL

Extension to the cerebellum segmentation [Manjón et al., 2017] [Romero et al., 2017]

Extension to the Alzheimer’s disease prediction [Hett et al., 2016]

Integration into the online platform volBrain [Manjón et Coupé, 2016]

Lobules I, II
Lobules III
Lobules IV
Lobules V
Lobules VI
Crus I
Crus II

Lobules VIIB
Lobules VIIIA
Lobules VIIIB
Lobules IX
Lobules X
White matter

Lobules I, II
Lobules III
Lobules IV
Lobules V
Lobules VI
Crus I
Crus II

Lobules VIIB
Lobules VIIIA
Lobules VIIIB
Lobules IX
Lobules X
Matière blanche

Normal Controls (NC) earlyMCI

lateMCI Alzheimer's Disease (AD)

NC

AD

lMCI AD

AD

NC

Associated publications:

Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, Jose V. Manjón, and Pierrick Coupé.
Patch-based DTI grading: Application to alzheimer’s disease classification.
Proc. of Int. Work. on Patch-based Techniques in Medical Imaging (Patch-MI, MICCAI), pages 76–83, 2016.

Jose V. Manjón, Pierrick Coupé, Jose E. Romero, Vinh-Thong Ta, and Rémi Giraud.
Ceres: A new cerebellum lobule segmentation method.
Dépot logiciel : IDDN.FR.001.470008.000.S.P.2015.000.21000, 2016.

Jose E. Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, and Min Tae M. Park, et al.
CERES: A new cerebellum lobule segmentation method.
NeuroImage (NIMG), 147:916–924, 2017.

[5, 6, 7]
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Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, Jose V. Manjón, and Pierrick Coupé.
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The SuperPatchMatch method

Adaptation of the PatchMatch algorithm to superpixels:

Similar initialization and random search.

Propagation: necessity to preserve the relative positions between adjacent neighbors.

→ Selection of the neighbor with the most similar orientation.

→ SuperPatchMatch: fast search algorithm of superpixel-based matches.
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Application to color transfer

Constraints: Reduced computational time (HD, video)

→ Superpixels

Global transfer of the source color palette

→ SuperPatchMatch

Respect of the target structures

→ Moyennes non locales

Superpixel-based Color Transfer (SCT):

Source image

Target image Transfer result
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Application to color transfer

Problem:
No control of the distribution of selected superpixels in the source image.

Solution:
To constrain a source superpixel to be selected no more than ε times.

Target image Source image

Without constraint

(ε =∞) With constraint (ε = 1)

Transfer result Selected superpixels

Transfer result Selected superpixels

(average colors)

(average colors)
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Application to color transfer - Results

Comparison to: Optimal transport [Pitié et al., 2007]

Relaxed optimal transport [Rabin et al., 2014]

3D color gamut mapping [Nguyen et al., 2014]

Target image Source image SCT

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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Impact of the neighborhood

Superpixel-based matches:
→ No use of the neighborhood, loss of spatial consistency.

Decomposition 1 Decomposition 2

Optical flow representation Superpixel-based
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Impact of the neighborhood

Usual distance between regular patches:

Sum of squared differences (patches of size (2s+ 1)2):

D(P (p), P (q)) =
s∑

i=−s

s∑
j=−s

(
A(x+ i, y + j)− B(x

′
+ i, y

′
+ j)

)2

How to adapt to superpixels?

Neighborhood structure preserving the geometry

Comparison between two elements
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Superpatch

Definition:

All superpixels Ai′ with their barycenter ci′ contained into a R radius.

Ai superpatch of superpixel Ai:

Ai = {Ai′ , such that ||ci − ci′ ||2 ≤ R}
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Superpatch

Comparison of two superpatches Ai et Bj:

Dissimilarity measure:

D(Ai,Bj)=

∑
A
i′∈Ai

∑
B
j′∈Bj

w(Ai′ , Bj′ )d(F
A
i′ , F

B
j′ )∑

A
i′∈Ai

∑
B
j′∈Bj

w(Ai′ , Bj′ )

Spatial weighting between registered barycenters:

w(Ai′ , Bj′ )=exp
−
‖c
i′−cj′−vij‖

2
2

σ2
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Superpatch

Superpixel-based matches:
→ Spatial consistency with the superpatch.

Decomposition 1 Decomposition 2

Optical flow representation Superpixel-based Superpatch-based
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Application to segmentation and labeling

LFW dataset [Huang et al., 2007]:
1500 example images and 927 test images.
3 labels: hair, face and background.
Decompositions into superpixels provided.

Label fusion
Search for matches
(SuperPatchMatch)

image to label decomposition into superpixels

example library

superpixel labeling

...

final labeling

......

...
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Application to segmentation and labeling

Impact of the superpatch:

Superpixels      Ground truh          SPM               SPM
      (superpixels)   (superpatches)

Superpixels      Ground truh          SPM               SPM
      (superpixels)   (superpatches)

Comparison to state-of-the-art:

Method
Superpixel-wise Pixel-wise

accuracy accuracy

Spatial CRF [Kae et al., 2013] 93.95% ×
CRBM [Kae et al., 2013] 94.10% ×
GLOC [Kae et al., 2013] 94.95% ×
DCNN [Liu et al., 2015] × 95.24%

SuperPatchMatch (2016) 95.08% 95.43%

→ Similar results to learning-based methods.
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Conclusion

PatchMatch for superpixels

Constraint on the distribution of matches

New superpixel neighborhood structure (superpatch)

Competitive results with some learning-based methods

Associated publications:

Rémi Giraud, Vinh-Thong Ta, Aurélie Bugeau, Pierrick Coupé, and Nicolas Papadakis.
SuperPatchMatch: An algorithm for robust correspondences using superpixel patches.
IEEE Trans. on Image Processing (TIP), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Transfert de couleurs basé superpixels.
Actes du Groupe d’Études du Traitement du Signal et des Images (GRETSI), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Superpixel-based color transfer.
Proc. of IEEE International Conference on Image Processing (ICIP), 2017.

[5, 5, 1, 2]
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Application to segmentation and labeling

Impact of the superpixel decomposition S:

Segmentation accuracy Labeling accuracy

S Ground truth G L(S) L(G)

0.2 0.3 0.4 0.5 0.6 0.7
Regularity 

0.941

0.940

0.939

0.938

0.937

0.936

0.935

La
be

lin
g 

ac
cu

ra
cy

SLIC
ERGC
LSC
ETPS
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1 Introduction

2 Matching algorithm based on patches for medical image segmentation

3 Matching algorithm based on patches of superpixels and applications

4 Decomposition into regular superpixels
State-of-the-art
The SCALP method
Evaluation of regularity
Results
Conclusion

5 Conclusion and perspectives



State-of-the-art - The SLIC method

Simple Linear Iterative Clustering (SLIC) [Achanta et al., 2012]

Constrained K-means Iterative refinement

...

Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk ) + dspatial(Xp, XSk )m

Fp = [lp, ap, bp] color in the CIELab space

Xp = [xp, yp] position

FSk , XSk average on pixels ∈ Sk
m regularity parameter
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State-of-the-art - The SLIC method

Distance between a pixel p and a superpixel Sk:

D(p, Sk) = dcolor(Fp, FSk ) + dspatial(Xp, XSk )m

Limitations:

Global regularity parameter → irregular shapes with low m.

No contour information → low contour adherence performances.

Only local pixel color considered → no robustness to noise.

m = 60 m = 10
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The SCALP method

Superpixels with Contour Adherence using Linear Path (SCALP):

Color and contour distance on the linear path Pk
p to the barycenter of the superpixel

Color distance on the pixel neighborhood V (p)
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The SCALP method

Superpixels with Contour Adherence using Linear Path (SCALP):

Color and contour distance on the linear path Pk
p to the barycenter of the superpixel

Color distance on the pixel neighborhood V (p)
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The SCALP method - Distance on linear path

Color distance on linear path Pkp :

dpath(P
k
p , Sk) =

1

|Pkp |
∑
q∈Pkp

dcolor(Fq , FSk )

→ Prevents the appearance of irregular shapes by encouraging convexity.
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The SCALP method - Distance on linear path

Color distance on linear path Pkp :

dpath(P
k
p , Sk) =

1

|Pkp |
∑
q∈Pkp

dcolor(Fq , FSk )

→ Prevents the appearance of irregular shapes by encouraging convexity.

SLIC SCALP
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The SCALP method - Distance on linear path

Contour distance on linear path Pkp :

dcontour(P
k
p) = γ max

q∈Pkp
C(q)

→ Possible use of a contour map C to favor the respect of image objects.
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The SCALP method - Pixel neighborhood

Color distance on the neighborhood V (p):

dneigh.(V (p), Sk) =
∑

q∈V (p)

dcolor(Fq , FSk )wp,q

→ Robustness to noise.

Final SLIC distance [Achanta et al., 2012]:

D(p, Sk) = dcolor(Fp, FSk ) + dspatial(Xp, XSk )m

Final distance SCALP:

D(p, Sk) =
(
dneigh.(V (p), Sk) + dpath(P

k
p, Sk) + dspatial(p, Sk)m

)(
1 + dcontour(P

k
p)
)
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Results - Qualitative comparison to state-of-the-art

Image ERS SLIC ERGC

Image ETPS LSC SCALP

Image ERS SLIC ERGC

Image ETPS LSC SCALP
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Results - Quantitative comparison to state-of-the-art

Respect of image objects:

Image Manual segmentation Superpixels

Achievable Segmentation Accuracy (ASA) [Liu et al., 2011]

Superposition with the objects of the manual segmentation

F-measure (F) [Martin et al., 2004]

Contour detection (Precision-Recall curves)

Validation on the BSD dataset: 200 images (321×481 pixels) [Martin et al., 2001]

Method F ASA

ERS [Liu et al., 2011] 0.593 0.951

SLIC [Achanta et al., 2012] 0.633 0.944

ERGC [Buyssens et al., 2014] 0.593 0.948

ETPS [Yao et al., 2015] 0.631 0.943

LSC [Chen et al., 2017] 0.607 0.950

SCALP 0.680 0.954

Regularity of the decomposition:

Circularity (C) [Schick et al., 2012] → Limited evaluation metric
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Evaluation of regularity - Shape regularity

Reference measures in the literature:

Circularity (C) [Schick et al., 2012]:

C(S) =
4π|S|
|P (S)|2

Regular shapes Standard shapes

Square Circle Ellipse Bean

C 0.830 1.000 0.870 0.580

C 0.480 0.430 0.410 0.440 20 30 40 50 60 70 
0.40

0.50

0.60

0.70

0.80

0.90

1.00

Shape size (pixels)

R
eg

ul
ar

ity

C - Square C - Ellipse C - Bean

→ Low measure for the square

→ No robustness to noise

→ No robustness to scale
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Evaluation of regularity - Shape regularity

Definition: a regular shape should be convex

Shape Regularity Criteria (SRC):

SRC(S) =
|S|
|HS |

.
|P(HS)|
|P(S)|

.
min(σx, σy)

max(σx, σy)

Shape S Convex hull HS Superposition

Regular shapes Standard shapes

Square Circle Ellipse Bean

C 0.830 1.000 0.870 0.580
SRCSRC 1.0001.000 0.9890.989 0.7120.712 0.5640.564

C 0.480 0.430 0.410 0.440
SRCSRC 0.7160.716 0.6330.633 0.4740.474 0.5000.500

→ Equivalent measure for the square and circle

→ Less sensitive to noise

→ Robust to scale
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Evaluation of regularity - Shape regularity

Definition: a regular shape should be convex, with smooth contours
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Evaluation of regularity - Shape consistency

Insufficient local evaluation

→ No taking into account of the consistency
of shapes and sizes.

SRC = 1.000 SRC = 1.000

Evaluation of the superpixel shape consistency

Smooth Matching Factor (SMF):

SMF(S) = 1−
∑
Sk∈S

|Sk|
|I|

.

∥∥∥∥∥ S∗k|S∗k | − S∗

|S∗|

∥∥∥∥∥
1

/2

Decomposition S={Sk} Average shape S∗

Global evaluation of regularity

Global Regularity (GR):

GR(S) = SMF(S)
∑
Sk∈S

|Sk|
|I|

SRC(Sk)
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Results - Quantitative

Validation on the standard BSD dataset [Martin et al., 2001].
200 images (321×481 pixels) with manual segmentations.

Respect of image objects
Superposition with several objects: ASA

Contour detection: F-measure

Regularity of the decomposition
Regularity of shape and consistency: GR

Method F ASA GR

ERS [Liu et al., 2011] 0.593 0.951 0.195

SLIC [Achanta et al., 2012] 0.633 0.944 0.336

ERGC [Buyssens et al., 2014] 0.593 0.948 0.235

ETPS [Yao et al., 2015] 0.631 0.943 0.494

LSC [Chen et al., 2017] 0.607 0.950 0.238

SCALP 0.680 0.954 0.391
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Results - Quantitative

Exemplar-based labeling:
(SuperPatchMatch) Label fusion

Search for matches
(SuperPatchMatch)

image to label decomposition into superpixels

example library

superpixel labeling

...

final labeling

......

...
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Conclusion

State-of-the-art results with high regularity

Limited computational time

Natural extension to supervoxels

Associated publications:

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
SCALP: Superpixels with contour adherence using linear path.
Proc. of International Conference on Pattern Recognition (ICPR), pages 2374–2379, 2016.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Décomposition en superpixels via l’utilisation de chemin linéaire.
Actes du Groupe d’Études du Traitement du Signal et des Images (GRETSI), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Robust shape regularity criteria for superpixel evaluation.
Proc. of IEEE International Conference on Image Processing (ICIP), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Evaluation framework of superpixel methods with a global regularity measure.
Journal of Electronic Imaging (JEI), 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Robust superpixels using color and contour features along linear path.
Computer Vision and Image Understanding (CVIU) (en révision), 2017.

[4, 8, 3, 4, 6]
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1 Introduction

2 Matching algorithm based on patches for medical image segmentation

3 Matching algorithm based on patches of superpixels and applications

4 Decomposition into regular superpixels

5 Conclusion and perspectives



Conclusion

Context:

Non-local exemplar-based methods

— without learning

— large example datasets

— fast

Label fusion
Search for matches
(SuperPatchMatch)

image to label decomposition into superpixels

example library

superpixel labeling

...

final labeling

......

...

Synthesis of contributions:

1) Low resolution descriptors:

→ SCALP, GR, Superpatch

2) Matching algorithms:

→ OPAL, SuperPatchMatch, SCT

3) Applications:

→ 3D Medical image segmentation

→ Alzheimer’s disease detection

→ Color transfer between images

→ Superpixel-based segmentation and labeling

→ ...
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Perspectives

Supervoxel-based segmentation of 3D medical images

→ To adapt SuperPatchMatch for complex structures, e.g., tumors:

— No prior on position

— Contours correlated to the MRI image content

Image Ground truth SuperPatchMatch

Example of 2D segmentation of tumors on the BRATS dataset [Menze et al., 2015]
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Perspectives

Computer graphics (style transfer):

Target image Source image Patch-based
[Frigo et al., 2016]

→ Important computational time
→ Copy of the same parts
→ Strict respect of contours

→ Superpixels to reduce the computational cost
→ Constraint search for matches (SCT)
→ To force the capture of the image contours

Image SCALP inversed SCALP
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Matching algorithms and superpixels

for image analysis and processing

Thank you for your attention.

Questions?



Publications

Vinh-Thong Ta, Rémi Giraud, D. Louis Collins, and Pierrick Coupé.
Optimized PatchMatch for near real time and accurate label fusion.
Proc. of Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 105–112, 2014.

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, D. Louis Collins, and Pierrick Coupé.
Optimisation de l’algorithme PatchMatch pour la segmentation de structures anatomiques.
Actes du Groupe d’Études du Traitement du Signal et des Images (GRETSI), 2015.

Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, José V. Manjón, D. Louis Collins, and Pierrick Coupé.
An optimized PatchMatch for multi-scale and multi-feature label fusion.
NeuroImage (NIMG), 124:770–782, 2016.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
SCALP: Superpixels with contour adherence using linear path.
Proc. of International Conference on Pattern Recognition (ICPR), pages 2374–2379, 2016.

Kilian Hett, Vinh-Thong Ta, Rémi Giraud, Mary Mondino, José V. Manjón, and Pierrick Coupé.
Patch-based DTI grading: Application to alzheimer’s disease classification.
Proc. of Int. Work. on Patch-based Techniques in Medical Imaging (Patch-MI, MICCAI), pages 76–83, 2016.

José V. Manjón, Pierrick Coupé, Jose E Romero, Vinh-Thong Ta, and Rémi Giraud.
Ceres: A new cerebellum lobule segmentation method.
Dépot logiciel : IDDN.FR.001.470008.000.S.P.2015.000.21000, 2016.

Jose E Romero, Pierrick Coupé, Rémi Giraud, Vinh-Thong Ta, Vladimir Fonov, and Min Tae M Park, et al.
CERES: A new cerebellum lobule segmentation method.
NeuroImage (NIMG), 147:916–924, 2017.

Rémi Giraud, Vinh-Thong Ta, and Nicolas Papadakis.
Décomposition en superpixels via l’utilisation de chemin linéaire.
Actes du Groupe d’Études du Traitement du Signal et des Images (GRETSI), 2017.

[1, 2, 3, 4, 5, 6, 7, 8]
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Proc. of IEEE International Conference on Image Processing (ICIP), 2017.
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SuperPatchMatch: An algorithm for robust correspondences using superpixel patches.
IEEE Trans. on Image Processing (TIP), 2017.
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Annex

Matching algorithm based on patches for medical image
segmentation



The PatchMatch algorithm

Reconstruction of an image A from the selected patches in an image B

Image A Image B

Image Ã (exhaustive search) (t=10h) Image Ã [Barnes et al., 2009] (t=14s)
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The PatchMatch algorithm

Coherency Sensitive Hashing [Korman and Avidan, 2011, Korman and Avidan, 2016]

Idea: To use a patch-based hash table to facilitate the search for matches.

→ Necessity to have the input image to compute the hashing of example images.

A B A B A B

Direct access from the table Propagation + table Propagation from A
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The OPAL method - Label fusion

S subject to segment,
T = {T1, . . . , Tn}n=1,...N the N example models,
P (xi) ∈ S the 3D patch at the position xi = (x, y, z) ∈ S,
Ki = {xj,t} the set of positions of selected patches,

l(xj,t) the label (0 or 1) given by the expert at voxel xj,t,

Label fusion:

L(P (xi)) =

∑
xj,t∈Ki

ω
(
xi,xj,t

)
L
(
P (xj,t)

)
∑

xj,t∈Ki
ω
(
xi,xj,t

) S(xi) =

{
1, if L(xi) ≥ 0.5

0, otherwise

Comparison of patches:

ω(xi,xj,t) = exp

(
1−

(‖P (xi)− P (xj,t)‖22
h(xi)2

+
‖xi − xj‖2

σ2

))
h(xi)

2 = α2 min
xj,t∈Ki

(‖P (xi)− P (xj,t)‖22 + ε)
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The OPAL method - Impact of parameters

Impact of the initialization window size

→ Set by default at 13×13×13 voxels

Taille de la fenêtre d'initialisation
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The OPAL method - Impact of parameters

Very limited computational time
→ Independent multi-feature and multi-scale search and fusion

•Aggregation of 
estimator maps

subject to segment

…

• Independent
multi-scale searches

• Independent
multi-feature
processing

final segmentation

…

…

…

…

feature 1

…

final estimator map
OPAL

feature Nf

OPAL

OPAL

OPAL

Dataset Multi-feature Multi-scale Median Dice Average Dice p-value Computational time

ICBM
7 7 89.4% 89.1± 1.85% < 10−14 0.27s

3 7 89.8% 89.6± 1.68% 0.0131 0.53s

3 3 89.9% 89.7± 1.70% × 0.92s

EADC-ADNI
7 7 89.4% 89.2± 1.55% < 10−25 0.49s

3 7 89.7% 89.6± 1.45% < 10−8 0.95s

3 3 90.1% 89.8± 1.46% × 1.48s
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The OPAL method - Impact of parameters

Very limited computational time
→ Independent multi-feature and multi-scale search and fusion
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The OPAL method - Impact of parameters

Very limited computational time
→ Independent multi-feature and multi-scale search and fusion
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The OPAL method - Results

Validation metric [Zijdenbos et al., 1994]:

Dice(Sexpert,Sauto) =
2|Sexpert∩Sauto|
|Sexpert|+|Sauto|

ICBM dataset: 80 young healthy subjects [Mazziotta et al., 1995]

Inter-expert variability: 90%.

Method Median Dice Computational time
Patch-based [Coupé et al., 2011] 88.2± 2.19% (×700)
Multi-templates [Collins and Pruessner, 2010] 88.6± 2.05% (×4300)
Sparse coding [Tong et al., 2013] 88.7± 1.94% (×6000)
Dictionary learning [Tong et al., 2013] 89.0± 1.90% (×1000)
OPAL (2015) 90.0± 1.70% 0.92s

EADC-ADNI: 100 healthy and unhealthy subjects [Boccardi et al., 2014]

Inter-expert variability: 89%.

Method Average Dice Computational time
Random Forest [Tangaro et al., 2014] 76.0± 7.00% ×
Multi-templates [Roche et al., 2014] 86.6± 1.70% ×
Multi-templates [Gray et al., 2014] 87.6± 2.07% ×
Patch-based [Zhu et al., 2017] 88.3± 2.50% ×
Multi-scale patch-based [Pant et al., 2015] 89.2± 2.22% (×200)
OPAL (2015) 89.8± 1.46% 1.48s
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The OPAL method - Adding subjects to the library

The complexity of OPAL only depends on the subject size:
→ Adding automatically segmented subjects to the library
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The OPAL method - Application to cerebellum segmentation

Several complex and adjacent structures
→ Weighting and regularization of estimator maps [Romero et al., 2017]

Comparison to MAGET [Park et al., 2014] and RASCAL [Weier et al., 2014]

Computational time: MAGET (2h), RASCAL (4h), CERES (1mn)

Lobules I, II
Lobules III
Lobules IV
Lobules V
Lobules VI
Crus I
Crus II

Lobules VIIB
Lobules VIIIA
Lobules VIIIB
Lobules IX
Lobules X
White matter

Lobules I, II
Lobules III
Lobules IV
Lobules V
Lobules VI
Crus I
Crus II

Lobules VIIB
Lobules VIIIA
Lobules VIIIB
Lobules IX
Lobules X
Matière blanche

Expert MAGeT RASCAL CERES

W
or

st 
   

   
   

M
ed

ian
   

   
   

  B
es

t

Structure MAGeT RASCAL CERES Intra-expert

Lobule I-II 0.3960 ± 0.1424 0.3260 ± 0.2178 0.5201 ± 0.1555 0.639
Lobule III 0.6800 ± 0.1741 0.6379 ± 0.2165 0.7213 ± 0.1572 0.751
Lobule IV 0.6980 ± 0.1440 0.6627 ± 0.1611 0.7271 ± 0.1346 0.818
Lobule V 0.7320 ± 0.1398 0.6666 ± 0.1560 0.7561 ± 0.1332 0.881
Lobule VI 0.8710 ± 0.0359 0.7969 ± 0.0523 0.8695 ± 0.0316 0.912
Lobule Crus I 0.8870 ± 0.0257 0.8383 ± 0.0351 0.9007 ± 0.0152 0.904
Lobule Crus II 0.7780 ± 0.0679 0.7340 ± 0.0667 0.8096 ± 0.0569 0.900
Lobule VIIB 0.5990 ± 0.1487 0.5820 ± 0.1137 0.6850 ± 0.1205 0.863
Lobule VIIIA 0.7300 ± 0.0934 0.6757 ± 0.1426 0.7926 ± 0.0759 0.860
Lobule VIIIB 0.7970 ± 0.0607 0.7783 ± 0.0931 0.8533 ± 0.0390 0.833
Lobule IX 0.8560 ± 0.0384 0.8460 ± 0.0545 0.8849 ± 0.0327 0.874
Lobule X 0.7540 ± 0.0490 0.7237 ± 0.0680 0.7548 ± 0.0469 0.760
Cerebellum 0.9250 ± 0.0094 0.9349 ± 0.0089 0.9377 ± 0.0090 0.941

Average 0.7320 ± 0.0568 0.6890 ± 0.0524 0.7729 ± 0.0427 0.833
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The OPAL method - Application to Alzheimer’s disease prediction

Automatic classification using OPAL for the search of matches.
Label fusion of the pathologies of the library models.

(NC = Normal Controls, AD = Alzheimer Disease, MCI = Mild Cognitive Impairment)

Preprocessing Search for matches 
and label fusion

Average on the
hippocampus

Final 
classification

subject

NC models AD models

+1 -1
...

...

...

...

subject to
classify diagnosis

NC earlyMCI

lateMCI AD

NC

AD

lMCI AD

AD

NC

Classification performances on several features.

Features NC vs AD NC vs MCI AD vs MCI eMCI vs lMCI

Average

Volume 88.4/83.1 69.5/63.9 71.1/67.2 67.2/63.7
FA 64.2/59.2 57.7/56.1 54.0/52.7 38.2/43.1
MD 85.7/80.3 66.0/62.6 75.0/72.5 67.6/62.8
AxD 83.5/81.4 63.5/58.0 74.3/70.2 68.9/66.8
RD 86.2/79.2 66.5/62.3 74.8/70.5 66.0/61.5

OPAL

T1 93.4/87.8 71.3/64.1 82.0/73.4 68.7/66.2
FA 85.0/80.1 63.5/60.1 74.9/70.3 63.0/60.7
MD 90.6/86.5 68.8/60.7 80.4/76.3 70.4/65.8
AxD 91.1/85.8 68.7/59.6 80.2/73.1 71.8/67.6
RD 90.3/85.1 68.9/61.0 80.0/76.5 69.3/65.4
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The OPAL method - volBrain

Integration of OPAL to the volBrain platform [Manjón and Coupé, 2016] (http://volbrain.upv.es)

Online volumetric study system of cerebral MRI images

Detailed reports (tissues, white matter, hippocampus, etc.) with segmentation files

Since mars 2015, more than 1400 users across the world for more than 45000 processed
MRI images

volBrain Volumetry Report. version 1.0 release 04-03-2015

Patient ID Sex Age Repor t Date
job3204 Male 33 03-Sep-2015

Tissue type Volume (cm3/% ) Image information
White Matter (WM) 632.15 (38.99%) [33.09, 45.30] Orientation neurological
Grey Matter (GM) 774.93 (47.79%) [43.84, 55.11] Scale factor 0.88
Cerebro Spinal Fluid (CSF) 214.38 (13.22%) [6.03, 16.63] SNR 32.18
Brain (WM + GM) 1407.09 (86.78%) [83.37, 93.97]
Intracranial Cavity (IC) 1621.46 (100.00%)

Structure
Cerebrum Total (cm3/% ) Right (cm3/% ) Left (cm3/% ) Asym.(% )

1219.21 (75.19%) 609.16 (37.57%) 610.05 (37.62%) -0.1464
[72.07, 82.16] [35.99, 41.19] [36.04, 41.01] [-1.54, 1.85]

GM WM GM WM GM WM
648.56

(40.00%)
570.65

(35.19%)
324.56

(20.02%)
284.60

(17.55%)
324.01

(19.98%)
286.05

(17.64%)
[37.14, 46.64] [29.85, 40.62] [18.56, 23.33] [14.90, 20.40] [18.57, 23.32] [14.93, 20.23]

Cerebelum Total (cm3/% ) Right (cm3/% ) Left (cm3/% ) Asym.(% )
159.71 (9.85%) 78.16 (4.82%) 81.55 (5.03%) -4.2525

[8.54, 11.09] [4.23, 5.56] [4.29, 5.55] [-5.42, 4.36]

GM WM GM WM GM WM
121.98
(7.52%)

37.73
(2.33%)

59.34
(3.66%)

18.82
(1.16%)

62.64
(3.86%)

18.91
(1.17%)

[5.94, 8.60] [1.69, 3.40] [2.91, 4.28] [0.85, 1.75] [3.02, 4.34] [0.83, 1.65]

Brainstem Total (cm3/% )
28.16 (1.74%) [1.49, 1.99]

Structure Total (cm3/% ) Right (cm3/% ) Left (cm3/% ) Asymmetry (% )
Lateral ventricles 14.12 (0.87%) 7.98 (0.49%) 6.14 (0.38%) 26.0880

[0.00, 1.97] [0.00, 1.00] [0.00, 1.02] [-68.2494, 55.52]

Caudate 7.67 (0.47%) 3.92 (0.24%) 3.76 (0.23%) 4.1648
[0.41, 0.60] [0.21, 0.30] [0.20, 0.30] [-6.1188, 8.82]

Putamen 9.53 (0.59%) 4.62 (0.28%) 4.91 (0.30%) -6.2293
[0.49, 0.71] [0.24, 0.35] [0.25, 0.36] [-7.8010, 4.70]

Thalamus 13.17 (0.81%) 6.55 (0.40%) 6.62 (0.41%) -0.9998
[0.72, 0.93] [0.36, 0.46] [0.36, 0.47] [-9.0223, 5.25]

Globus Pallidus 2.99 (0.18%) 1.48 (0.09%) 1.51 (0.09%) -1.5840
[0.14, 0.21] [0.07, 0.11] [0.07, 0.11] [-12.3697, 12.30]

Hippocampus 9.45 (0.58%) 4.79 (0.30%) 4.66 (0.29%) 2.6568
[0.46, 0.64] [0.23, 0.33] [0.23, 0.32] [-9.5200, 12.48]

Amygdala 2.11 (0.13%) 1.02 (0.06%) 1.09 (0.07%) -6.1667
[0.09, 0.15] [0.05, 0.07] [0.05, 0.07] [-15.2340, 19.77]

Accumbens 0.82 (0.05%) 0.37 (0.02%) 0.45 (0.03%) -20.8955
[0.03, 0.07] [0.01, 0.03] [0.02, 0.04] [-40.6186, 12.76]

Intracranial cavity extraction

Tissue clasification

Macrostructures

Subcor tical structures

A 22/70

http://volbrain.upv.es


Annex

Matching algorithm based on patches of superpixels and
applications



The SuperPatchMatch method

Adaptation of PatchMatch propagation step

A B

Selection of the neighbor with the most similar orientation:

C(i′) = argmin
k∈NB

M(i′)

‖(θii′ + π)− θi′k‖1
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The SCT method - Previous works

Target image Source image

Parametric methods: statistics transfer.

[Reinhard et al., 2001, Tai et al., 2005]

→ No guarantee to have a relevant color transfer.

Optimal transport (OT): transfer of color histogram.

[Pitié et al., 2007, Rabin et al., 2012, Frigo et al., 2014]

→ The exact transfer may lead to visual outliers.

Relaxed OT: adaptive transfer of the source colors

using superpixels. [Rabin et al., 2014]

→ High computational cost with OT methods.

[Reinhard et al., 2001]

[Pitié et al., 2007]

[Rabin et al., 2014]
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The SCT method - Global matching of superpixels

Proposed solution: A superpixel in B cannot be selected more than ε times.

If a superpixel Ai finds a better match Bk already taken by ε superpixels Aj?

Switch between matches:

A B
Switch illustration (ε = 2)

C(Ai, Aj) =
(
D(Ai, Bk)−D(Ai, B(i))

)
+
(
D(Aj , B(i))−D(Aj , Bk)

)
.

If ∃Aj , C(Ai, Aj) < 0

argmin
Aj

C(Ai, Aj)→ B(i),

Ai → Bk.

→ Optimization of the total matching distance
∑
iD(Ai, B(i)).
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The SCT method - Global matching of superpixels

→ With the constraint set by ε, global selection of the source color palette.

Target image Source image

Without constraint (ε =∞) With constraint (ε = 1)

Transfer result Selected superpixels Transfer result Selected superpixels
(average colors) (average colors)
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The SCT method - Global assignment problem

With ε = 1, approximation of the optimal assignment problem:
“Given two sets A={Ai}i∈{1,...,|A|} and B={Bj}j∈{1,...,|B|} with |A| ≤ |B|,

association of each Ai to a unique B(i) that minimizes
∑
iD(Ai, B(i)).”

Problem addressed with costly optimal algorithms [Munkres, 1957]
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Munkres algorithm 
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Munkres algorithm
Superpixel ANN matching
Random assignments

Selected colors

Target image A Ã with [Munkres, 1957]

Source image B Ã with constrained SPM

→ Close results to the optimal resolution in very reduced computational time.
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The SCT method - Color fusion

Fusion of selected colors by non-local means [Buades et al., 2005]:

Superpixel Ai = [Xi, Ci] = [(xi, yi), (ri, gi, bi)].

For all pixels p ∈ Ai, contribution of superpixels Aj .

Color fusion:

At(p) =

∑
j ω(p,Aj)C̄B(j)∑

j ω(p,Aj)

→ Only transfer existing source colors.

Weighting based on spatial and color similarity:

Distance using covariance information of Ai:

ω(p,Aj) = exp
(
−(p− Āj)TQ−1

i (p− Āj)
)

→ Respect of the target image structures.
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The SCT method - Step summary

Total computational time < 1s (480×360 pixels).

Target image Source image

< 0.2s < 0.1s < 0.3s

Superpixels Transfer of average colors Final result
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The SCT method - Influence of the matching constraint

With the constraint set by ε, homogeneous selection of the source superpixels.
→ Global transfer of the source color palette.

SCT (ε =∞) SCT (ε = 3)

Target image Transfer result Transfer result

Source image Selection map Selection map
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The SCT method - Influence of the matching constraint

With the constraint set by ε, homogeneous selection of the source superpixels.
→ Global transfer of the source color palette.

SCT (ε =∞) SCT (ε = 3)

Target image Transfer result Transfer result

Source image Selection map Selection map
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The SCT method - Comparison to state-of-the-art

Comparison to: Optimal transport [Pitié et al., 2007]

Relaxed optimal transport [Rabin et al., 2014]

3D color gamut mapping [Nguyen et al., 2014]

Target image Source image SCT

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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The SCT method - Comparison to state-of-the-art

Comparison to: Optimal transport [Pitié et al., 2007]

Relaxed optimal transport [Rabin et al., 2014]

3D color gamut mapping [Nguyen et al., 2014]

Target image Source image SCT

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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The SCT method - Several source images

Target image Source images SCT

[Pitié et al., 2007] [Rabin et al., 2014] [Nguyen et al., 2014]
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SuperPatchMatch - Robustness of the superpatch

Displacements between the superpixel-based and superpatch-based matches

Decomposition 1 Decomposition 2

Optical flow representation Superpixels Superpatches
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SuperPatchMatch - Robustness of the superpatch

Displacements between the superpixel-based and superpatch-based matches

Decomposition 1 Decomposition 2

Optical flow representation Superpixels Superpatches
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SuperPatchMatch - Robustness of the superpatch

Displacements between the superpixel-based and superpatch-based matches

Decomposition 1 Decomposition 2

Optical flow representation Superpatches (intensity) Superpatches (intensity + texture)
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SuperPatchMatch - Robustness of the superpatch

Displacements between the superpixel-based and superpatch-based matches

Decomposition 1 Decomposition 2

Optical flow representation

Superpixels Superpatches
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SuperPatchMatch - Label fusion

Label fusion:

Lm(Ai) =

∑
Tj∈Kmi

ω(Ai, Tj)∑M
m=1

∑
Tj∈Kmi

ω(Ai, Tj)

ω(Ai, Tj) = exp

(
1−

(
D(Ai,Tj)

h(Ai)2
+
‖ci − cj‖2

β2

))
L(Ai) = argmax

m∈{1,...,M}
Lm(Ai)

Superpixels Ai (test), Tj (library)

Kmi = {Tj} selected, with label m

Measure D between superpatches Ai and Tj

ci barycenter of superpixel Ai

h(Ai) minimal distance among the D(Ai,Tj)

97.60%

96.41%

Superpixels Ground truth Face Background Hair Result L
Labeling probabilities Lm
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SuperPatchMatch - Impact of parameters
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SuperPatchMatch - Impact of parameters

Adaptation of PatchMatch propagation step (94.20%→ 95.08%)

Superpixels Ground truth

W
it
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u
t

a
d

a
p

ta
ti

o
n

Tj (iter. #0) Tj (iter. #1) Tj (iter. #5) Result (93.33%)

W
it

h
a

d
a

p
ta

ti
o

n

Tj (iter. #0) Tj (iter. #1) Tj (iter. #5) Result (98.04%)
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SuperPatchMatch - Comparison to state-of-the-art

Comparison to state-of-the-art:

Method
Superpixel-wise Pixel-wise Computational

accuracy accuracy time

PatchMatch (9×9) 87.73% 87.02% 3.940s
Spatial CRF [Kae et al., 2013] 93.95% × ×
CRBM [Kae et al., 2013] 94.10% × ×
GLOC [Kae et al., 2013] 94.95% × 0.323s
DCNN [Liu et al., 2015] × 95.24% ×
SuperPatchMatch (2016) 95.08% 95.43% 0.255s

→ Similar results to learning-based approaches
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Application to segmentation

Impact of regularity:
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Annex

Decomposition into regular superpixels



Use of superpixels

Advantages of superpixels:
Reduce the number of considered elements

Robustness to noise

Respect of image objects contours

Limitations:

Shape irregularity → Irregularity of the neighborhood

→ Need for regular superpixels

Image

Regular blocks Quadtree Superpixels
(N=1024) (N=400) (N=289)
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Use of superpixels

Advantages of superpixels:
Reduce the number of considered elements

Robustness to noise

Respect of image objects contours

Limitations:

Shape irregularity → Irregularity of the neighborhood

→ Need for regular superpixels
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Use of superpixels

Advantages of superpixels:
Reduce the number of considered elements

Robustness to noise

Respect of image objects contours

Limitations:

Shape irregularity → Irregularity of the neighborhood

→ Need for regular superpixels

Decomposition into superpixelsDecomposition into superpixels Adjacency graphAdjacency graph
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The SCALP method - Summary of equations

Color distance on the neighborhood:

dneigh.(V (p), Sk) =
∑

q∈V (p)

dcolor(Fq, FSk )wp,q

wp,q =
1

Z
exp

(
−
dcolor(Fq, FSk )

σ2

)

Color distance on linear path:

dcontour(P
k
p) = 1 + γ max

q∈Pkp
C(q)

Total color distance:

Dcouleur(V (p), Sk,P
k
p)=λdneigh.(V (p), Sk) + (1−λ)

1

|Pkp|
∑
q∈Pkp

dcolor(q, Sk)

Final distance:

D(p, Sk) =
(
Dcolor(V (p), Sk,P

k
p) + dspatial(Xp, XSk )m

)
dcontour(P

k
p)
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The SCALP method - Fast distance computation

The distance dneigh. on the neighborhood V (p) of pixel p can be computed in O(1).

Demonstration:

The distance between features F in dneigh. reads:

dneigh.(V (p), Sk) =
∑

q∈V (p)

(Fq − FSk )
2wp,q,

=
∑

q∈V (p)

(
F 2
q + F 2

Sk − 2FqFSk
)
wp,q,

=
∑

q∈V (p)

F 2
q wp,q +

∑
q∈V (p)

F 2
Skwp,q − 2

∑
q∈V (p)

FqFSkwp,q,

= Fp(2) + F 2
Sk

∑
q∈V (p)

wp,q − 2FSk
∑

q∈V (p)

Fqwp,q,

= Fp(2) + F 2
Sk − 2FSkFp

(1).

Fp(2) =
∑
q∈V (p) F

2
q , and Fp(1) =

∑
q∈V (p) Fq, can be pre-computed.

The complexity of dneigh. is hence reduced to O(1) instead of O(N).
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The SCALP method - Linear path definition

Path between a pixel p at position Xp and a superpixel Sk of barycenter XSk

Real-time computation with the [Bresenham, 1965] algorithm
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The SCALP method - Comparison to geodesic distances

Sinuous path with geodesics → more irregular superpixels

Image Geodesic distance Linear path distance

Image [Rubio et al., 2016] SCALP
(geodesic) (linear path)
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The SCALP method - Algorithm

SCALP(I,K, C)

1: Initialization of features Sk ← [FSk , XSk ] from a regular grid
2: Initialization of superpixel labels S ← 0

3: Pre-computation of features Fp(2) and Fp(1)
4: For each iteration do
5: Distance d←∞
6: For each Sk do
7: For each pixel p in a (2r + 1)×(2r + 1) window centered on XSk do

8: Computation of the linear path Pkp [Bresenham, 1965]

9: Computation of D(p, Sk) using C and Pkp
10: If D(p, Sk) < d(p) then
11: d(p)← D(p, Sk)
12: S(p)← k

13: For each Sk do
14: Update [FSk , XSk ]
15: Return S
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The SCALP method - Influence of parameters

Distance parameters
Neighborhood |V (p)| = (2n+ 1)2, λ color distance, γ contour distance

Initial image n=0, λ=1, γ=0

n=3, λ=1, γ=0 n=3, λ=0.5, γ=0 n=3, λ=0.5, γ=50

neighborhood color distance contour distance

A 45/70



The SCALP method - Influence of parameters

Distance parameters
Neighborhood |V (p)| = (2n+ 1)2, λ color distance, γ contour distance
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The SCALP method - Influence of parameters

Contour detection
Even a simple contour detection from the superpixel boundaries obtained at multiple

scales improves the performances.

* Thresholding

decompositions                                              average boundaries                                           contour map

Average

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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[F = 0.787] Human
[F = 0.646] SCALP
[F = 0.650] SCALP ( ) (Achanta et al., 2012)
[F = 0.662] SCALP (Maire et al., 2008) 
[F = 0.671] SCALP (Xiaofeng and Bo, 2012)
[F = 0.680] SCALP (Dollár and Zitnick, 2013)

*

[Maire et al., 2008, Xiaofeng and Bo, 2012, Dollár and Zitnick, 2013]
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The SCALP method - Initial segmentation constraint

Hard constraint on the initial segmentation

Hierarchical segmentation from a contour map [Arbelaez et al., 2009]

Thresholding of the segmentation by a parameter τ

Image τ = 0 τ = 0.2 τ = 0.6
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The SCALP method - Initial segmentation constraint

Adaptation of the hierarchical segmentation to the superpixel scale

Image Contour map

Hierarchical segmentation Thresholding Fusion
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The SCALP method - Initial segmentation constraint

Initial images of the BSD

SCALP

SCALP+HC
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall
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1
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[F = 0.787] Human
[F = 0.593] ERS
[F = 0.633] SLIC
[F = 0.577] SEEDS
[F = 0.593] ERGC
[F = 0.588] WP
[F = 0.631] ETPS
[F = 0.607] LSC
[F = 0.646] SCALP
[F = 0.680] SCALP
[F = 0.709] SCALP+HC

SEEDS [Van den Bergh et al., 2012] and WP [Machairas et al., 2015] added to the comparison
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The SCALP method - Initial segmentation constraint

Initial images of the BSD + Gaussian noise

SCALP

SCALP+HC
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[F = 0.424] ERS
[F = 0.506] SLIC
[F = 0.598] SEEDS
[F = 0.487] ERGC
[F = 0.460] WP
[F = 0.611] ETPS
[F = 0.509] LSC
[F = 0.637] SCALP
[F = 0.636] SCALP
[F = 0.640] SCALP+HC

SEEDS [Van den Bergh et al., 2012] and WP [Machairas et al., 2015] added to the comparison
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The SCALP method - Results

Image ERS SLIC ERGC

Image ETPS LSC SCALP

Image ERS SLIC ERGC

Image ETPS LSC SCALP
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The SCALP method - Results

Image / Noisy image
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The SCALP method - Results

Image / Noisy image

ERS SLIC ERGC

ETPS LSC SCALP
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The SCALP method - Results on noisy images

Image ERS SLIC ERGC

Image ETPS LSC SCALP

Image ERS SLIC ERGC

Image ETPS LSC SCALP
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The SCALP method - Extension to supervoxels

Natural extension to supervoxels for the decomposition of 3D objects

Results on the BRATS dataset [Menze et al., 2015] (MRI with tumors)

ASA 3D: SLIC 0.9840 [Achanta et al., 2012]

ERCG 0.9652 [Buyssens et al., 2014]

SCALP 0.9848

Image Ground truth Supervoxels Image Ground truth Supervoxels
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Regularity metrics - Compromise between the metrics

The metrics cannot be simultaneously optimized.

Max. color homogeneity Max. color homogeneity

Max. respect of image objects Max. regularity
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Superpixel metrics

Segmentation into superpixels S, ground truth segmentation G

Global Regularity (GR): Shape regularity and consistency of superpixels

SRC(S) =
∑
k

|Sk|
|I|

.
|S|
|HS |

.
|P(HS)|
|P(S)|

.
min(σx, σy)

max(σx, σy)

SMF(S) = 1−
∑
Sk

|Sk|
|I|

.

∥∥∥∥∥ S
∗

|S∗|
−

S∗k
|S∗
k
|

∥∥∥∥∥
1

/2

GR(S) = SRC(S)SMF(S)

Precision-Recall (PR): Average of superpixels boundaries at multiple scales [Martin et al., 2004]

BR(S,G) =
|B(S) ∩ B(G)|
|B(G)|

P(S,G) =
|B(S) ∩ B(G)|
|B(S)|

F =
2.P.BR

P + BR

Achievable Segmentation Accuracy (ASA): Respect of the image objects [Liu et al., 2011]

ASA(S,G) =
1

|I|

∑
k

max
i
|Sk ∩Gi|

Contour Density vs Boundary Recall (CD vs BR): Adherence to contours [Martin et al., 2004]

CD(S) =
|B(S)|
|I|

BR(S,G) =
|B(S) ∩ B(G)|
|B(G)|
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Superpixels metrics - CD vs BR

Contour Density vs Boundary Recall (CD vs BR): [Martin et al., 2004]

CD(S) =
|B(S)|
|I|

BR(S,G) =
|B(S) ∩ B(G)|
|B(G)|

Image with the Irregular superpixels Regular superpixels
ground truth contours (BR=1.00 | BR×(1-CD)=0.563) (BR=1.00 | BR×(1-CD)=0.858)

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
BR
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0.1

0.2
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0.4

0.5

C
D
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

BR
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0.5

C
D
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Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

ICV(S) =
1

|S|
∑
Sk

1

|Sk|

√∑
p∈Sk

(I(p)− µ(Sk))2

Explained Variation (EV): [Moore et al., 2008]

EV(S) =

∑
Sk
|Sk| (µ(Sk)− µ(I))2∑
p∈I (I(p)− µ(I))2

= 1−
∑
Sk

|Sk|
|I|

.
σ(Sk)2

σ(I)2

EV = 0.846 EV = 0.846

ICV = 0.650 ICV = 0.260

EV = 0.846

ICV = 0.325
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Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

ICV(S) =
1

|S|
∑
Sk

1

|Sk|

√∑
p∈Sk

(I(p)− µ(Sk))2

Explained Variation (EV): [Moore et al., 2008]

EV(S) =

∑
Sk
|Sk| (µ(Sk)− µ(I))2∑
p∈I (I(p)− µ(I))2

= 1−
∑
Sk

|Sk|
|I|

.
σ(Sk)2

σ(I)2

Superpixels Average colors µ(Sk) Color variance σ(Sk)2
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Superpixel metrics - Color homogeneity

Segmentation into superpixels S

Intra-Cluster Variation (ICV): [Benesova and Kottman, 2014]

ICV(S) =
1

|S|
∑
Sk

1

|Sk|

√∑
p∈Sk

(I(p)− µ(Sk))2

Explained Variation (EV): [Moore et al., 2008]

EV(S) =

∑
Sk
|Sk| (µ(Sk)− µ(I))2∑
p∈I (I(p)− µ(I))2

= 1−
∑
Sk

|Sk|
|I|

.
σ(Sk)2

σ(I)2
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Superpixel metrics - Regularity

Shape regularity

Circularity (C) [Schick et al., 2012]:

C(S) =
4π|S|
|P (S)|2

Shape Regularity Criteria (SRC):

SRC(S) =
|S|
|HS |

.
|P(HS)|
|P(S)|

.
min(σx, σy)

max(σx, σy)
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Regular shapes Standard shapes Irregular shapes

Square Circle Hexagon Ellipse Cross Bean W Split U

C 0.830 1.000 0.940 0.870 0.530 0.580 0.150 0.280 0.150

SRC 1.000 0.989 0.987 0.712 0.650 0.564 0.387 0.369 0.233

C 0.480 0.430 0.420 0.410 0.340 0.440 0.100 0.210 0.070

SRC 0.716 0.633 0.625 0.474 0.515 0.500 0.296 0.321 0.136
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Superpixel metrics - Regularity

Robustness to noise

SLIC superpixels with noise on the boundaries

C = 0.296 | SRC = 0.434 C = 0.401 | SRC = 0.562 C = 0.371 | SRC = 0.570

m = 10 m = 50 m = 200

Evolution of the regularity parameter m
Average results on the BSD
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Superpixel metrics - Regularity

Robustness to noise

SLIC superpixels with noise on the boundaries
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Superpixel metrics - Regularity

Evaluation of the superpixel decomposition consistency

Jaccard [Machairas et al., 2015]:

J(S) =
1

|S|
∑
Sk∈S

|S∗k ∩ Ŝ
∗|

|S∗k ∪ Ŝ∗|

Ŝ
∗

= S
∗
argmax
t

(|S∗t |≥
|I|
|S| )
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Decomposition S Average shape S∗ Binary average shape Ŝ∗

→ Does not consider the size of superpixels. Thresholding not robust to large superpixels.

Smooth Matching Factor (SMF):

SMF(S) = 1−
∑
Sk

|Sk|
|I|

.

∥∥∥∥∥ S∗k|S∗k | − S∗

|S∗|

∥∥∥∥∥
1

/2

→ Direct comparison to the average shape S∗

→ More relevant and robust metric

J = 0.331 J = 0.308 J = 0.262

SMF = 0.520 SMF = 0.719 SMF = 0.912

J = 0.364 J = 0.291

SMF = 0.517 SMF = 0.536
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Superpixel metrics - Regularity

Global evaluation of the regularity: shape and consistency

Global Regularity (GR):

GR(S) = SMF(S)
∑
Sk∈S

|Sk|
|I|

SRC(Sk)

→ SCALP generates very regular superpixels while respecting the image contours.

→ The evaluation of performances at several regularity levels enables to be robust to the

choice of the regularity parameter and to better represent a superpixel method potential.
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Impact of regularity - Video tracking

The regularity of superpixels
facilitates the tracking of
objects.

?

image t image t+1 image t image t+1

Tracking accuracy with the TSP
method [Chang et al., 2013] on the
sequences from [Tsai et al., 2012].

Accuracy Loss
Sequence Regular Irregular Regular Irregular
birdfall2 98.3% 97.8% 1.0% 1.4%
girl 51.1% 50.4% 13.9% 24.8%
parachute 75.3% 73.9% 4.5% 5.1%
penguin 94.3% 85.0% 2.6% 8.8%
Average 79.8% 76.7% 5.5% 10.0%
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Impact of regularity - Image compression

The irregularity facilitate the approximation of the initial colors.
Colors contained into a superpixel approached by a third order polynomial.

Initial image I Regular compression Ir Irregular compression Ir

Average on the BSD images [Martin et al., 2001]

Mean Square Error (MSE):

MSE(I, Ir) =
1

|I|
∑
p∈I

(I(p)− Ir(p))
2
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Impact of regularity - Image segmentation

The regularity is correlated to performances.
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Impact of regularity - Image segmentation

The fusion of irregular decompositions may enable to efficiently segment
the image objects.

CompletionThresholding
 

decompositions                                                  average boundaries                                      contour map                                     hierarchical segmentation                                   segmentation 

Average

 

Thresholding

Images / contours Low regularity High regularity Images / contours Low regularity High regularity
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Impact of regularity - Correlation

Higher correlation between the proposed metrics and the performances.

GR SMF J SRC C

ASA −0.5473 −0.5250 −0.5266 −0.5350 −0.5318

UE 0.5506 0.5284 0.5299 0.5384 0.5353

BR −0.9136 −0.8974 −0.8972 −0.9049 −0.9034

P −0.9627 −0.9645 −0.9656 −0.9688 −0.9712
EV −0.6641 −0.6426 −0.6428 −0.6528 −0.6503

MSE 0.6760 0.6552 0.6554 0.6655 0.6636

Average 0.8165 0.8113 0.8076 0.8122 0.8085
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Annex

Perspectives



Perspectives - Synthesis of non-linear transformation

→ To adapt OPAL to the transfer of displacement vectors

reference subject

ReANN search Non-linear registration

models with displacement map towards the reference subject

subject

displacement map

Fusion of
vectors

Smart fusion of displacement vectors:

Set of vectors Average vector Median vector [Liu, 2013]

Previous works: Smart fusion of optical flow vectors [Fortun et al., 2016]

Patch-based synthesis of non-linear transformations [Kim et al., 2015]
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Perspectives - Supervoxel-based segmentation of medical images

Supervoxel-based segmentation of 3D medical images

→ To adapt SuperPatchMatch for complex structures, e.g., tumors:

— No prior on tumor position

— Contours correlated to the MRI image content

Image Ground truth OPAL SPM superpixels SPM superpatches

Example of 2D segmentation of tumors on the BRATS dataset [Menze et al., 2015]
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Perspectives - Style transfer

Patch-based method [Frigo et al., 2016]:

Target image Source image Result

→ Important computational time
→ Copy of the same image parts
→ Transfer of texture and colors = too strict respect of the target contours

→ Superpixels to reduce the computational cost
→ Constrained search for matches (SCT)
→ To force the capture of the image contours

Distance inversed SCALP:

D(p, Sk)=
(
dspatial(p, Sk)m−Dc(V (p), Sk,P

k
p)
) 1

dcontour(Pkp)

inversed SCALP
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Perspectives - Style transfer

Comparison to neural network:

Target image Source image

Patch-based method Neural network
[Frigo et al., 2016] [Gatys et al., 2015]
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