SCALP is based on the Simple Linear Iterative Clustering (SLIC) framework [4]
Initial grid partition into S×S superpixels, and clustering of pixels within 2S×2S boxes for each superpixel Sk
Color and spatial distances are considered to gather spatially close and homogeneous pixels so
the clustering distance between a pixel p and a superpixel Sk is: D(p,Sk) = dcolor(p,Sk) + dspatial(p,Sk)
Use of pixel neighborhood
SCALP considers the neighborhood information to produce a more accurate decomposition and be robust to noise
The pixel neighborhood N(p) improves the color distance: D(p,Sk) = dcolor(N(p),Sk) + dspatial(p,Sk)
Linear path definition
Linear path Pk p={q} between the position Xp of a pixel p and the barycenter Xk of the considered superpixel Sk
Color distance on linear path
SCALP considers the color distance on Pk p:
D(p,Sk) = (dcolor(N(p),Sk) + dcolor(Pk p,Sk)) + dspatial(p,Sk)
The color distance on the linear path prevents irregular shapes to appear:
Contour distance on linear path
A contour prior map can be given to SCALP to enforce the respect of image objects.
The maximum of contour intensity on Pk p is considered in a new term dcontour(Pk p)
SCALP clustering distance is defined as:
D(p,Sk) =
R. Giraud, V.-T. Ta and N. Papadakis: Robust Superpixels using Color and Contour Features along Linear Path Computer Vision and Image Understanding (CVIU), 2018
Others
R. Giraud, V.-T. Ta and N. Papadakis: SCALP: Superpixels with Contour Adherence using Linear Path International Conference on Pattern Recognition (ICPR), 2016
R. Giraud, V.-T. Ta and N. Papadakis: Décomposition en superpixels via l’utilisation de chemin linéaire Groupe d'Études du Traitement du Signal et des Images (GRETSI), 2017
M. Y. Liu, O. Tuzel, S. Ramalingam and R. Chellappa: Entropy rate superpixel segmentation IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2011
R. Achanta, A. Shaji, K. Smith, A. Lucchi, et al.:
SLIC superpixels compared to state-of-the-art superpixel methods IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2012
M. Van den Bergh, X. Boix, G. Roig, B. de Capitani and L. Van Gool:
SEEDS: Superpixels extracted via energy-driven sampling European Conference on Computer Vision (ECCV), 2012
P. Buyssens, I. Gardin, S. Ruan and A. Elmoataz:
Eikonal-based region growing for efficient clustering Image and Vision Computing, 2014
J. Yao, M. Boben, S. Fidler and R. Urtasun:
Real-time coarse-to-fine topologically preserving segmentation IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015
J. Chen, Z. Li and B. Huang:
Linear spectral clustering superpixel IEEE Trans. on
Image Processing, 2017