The proposed TASP approach [1] is based on the K-means-based clustering framework of the SLIC framework [4]
Initial grid partition into S×S superpixels, and clustering of pixels within 2S×2S boxes for each superpixel Sk
Color and spatial distances are considered to gather spatially close and homogeneous pixels so
the clustering distance between a pixel p and a superpixel Sk is: D(p,Sk) = dcolor(p,Sk) + dspatial(p,Sk)
Automatic adaptation of superpixel regularity
TASP adapts the regularity constraint according to the superpixel content to get relevant results on homogeneous and textured regions
The regularity parameter mk for a superpixel Sk is set such that:
m -> mk=exp(σ(Fp in Sk)/beta) (1)
Pixel to Superpixel Texture Homogeneity Term
Patch-based nearest neighbor (NN) matching within the superpixel
Fast selection of N similar patches of size nxn with PatchMatch [12]
New pixel to superpixel texture homogeneity term:
dtexture(p,Sk)=1/N Σ pk∈Sk
1/n ||FP(p) - FP(pk)||2 (2)
Complementary term to ensure texture unicity by encouraging the selection of patches P(pk) close to the superpixel barycenter:
dunicity(p,Sk)= 2/N Σ pk∈Sk
(1-exp(-||Xpk-XSk||2/(SxS))) (3)
Final TASP clustering distance
TASP clustering distance is defined as:
D(p,Sk) = dcolor(p,Sk) + dspatial(p,Sk)mk + dtexture(p,Sk) + dunicity(p,Sk)mk
Important Complexity
High complexity due to the computation of nearest neighbor matching in each overlapping superpixel window at each iteration
R. Giraud, V.-T. Ta, N. Papadakis and Yannick Berthoumieu: Texture-Aware Superpixel Segmentation IEEE International Conference on Image Processing (ICIP), 2019
Others
R. Giraud, and Yannick Berthoumieu: Texture Superpixel Clustering from Patch-based Nearest Neighbor Matching European Signal Processing Conference (EUSIPCO), 2019
R. Giraud, V.-T. Ta, N. Papadakis and Yannick Berthoumieu: Superpixels adaptés localement aux textures Groupe d'Études du Traitement du Signal et des Images (GRETSI), 2019
M. Y. Liu, O. Tuzel, S. Ramalingam and R. Chellappa: Entropy rate superpixel segmentation IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2011
M. Van den Bergh, X. Boix, G. Roig, B. de Capitani and L. Van Gool:
SEEDS: Superpixels extracted via energy-driven sampling European Conference on Computer Vision (ECCV), 2012
R. Achanta, A. Shaji, K. Smith, A. Lucchi, et al.:
SLIC superpixels compared to state-of-the-art superpixel methods IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2012
P. Buyssens, I. Gardin, S. Ruan and A. Elmoataz:
Eikonal-based region growing for efficient clustering Image and Vision Computing, 2014
J. Yao, M. Boben, S. Fidler and R. Urtasun:
Real-time coarse-to-fine topologically preserving segmentation IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015
J. Chen, Z. Li and B. Huang:
Linear spectral clustering superpixel IEEE Trans. on
Image Processing, 2017
R. Achanta and S. Süsstrunk:
Superpixels and polygons using simple non-iterative clustering IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017
R. Giraud, V.-T. Ta and N. Papadakis:
Robust Superpixels using Color and Contour Features along Linear Path Computer Vision and Image Understanding, 2018